967 resultados para radius-ulna
Resumo:
A hydrographic section in the region east of Luzon was repeated 14 times during the period from 1986 to 1991. The data revealed the existence of a subsurface countercurrent located on the shoreward side of the Kuroshio with its upper boundary at about 500 m. The countercurrent, which should be called the Luzon Undercurrent (LUG), was only about 50 km wide, which is comparable to the baroclinic radius of deformation. Despite considerable variabilities both in velocity profile and intensity, the LUC appears to be a permanent feature. Over the period of observations, the maximum speed in the LUC calculated from the mean temperature and salinity by assuming geostrophy (relative to 2500 db) was 7 cm s(-1) at about 700 m and its mean geostrophic volume transport was 3.6 Sv (1 Sv = 10(6) m(3) s(-1)). About 28% of this transport was composed of the low-salinity North Pacific Intermediate Water (NPIW) advected to the south along the coast of Luzon. (C) 1997 Elsevier Science Ltd.
Resumo:
作为可再生能源,波浪能的吸收和利用一直是国内外热点研究内容之一。本文提出一种新的基于惯性摆结构的波浪能吸收转换方法,对这种结构在波浪力作用下的频域响应进行了分析,建立了其最优化能量获取模型,提出采用多种群遗传算法对其结构进行优化设计,并针对系统所受波浪力(矩)随载体半径改变而改变,且求取困难的问题,采用最小二乘法对波浪力(矩)与载体半径变化的关系进行了拟和。通过优化结果找出影响结构获取波浪能量的因素,仿真结果表明了方法的先进性,为进一步的应用研究和频域波能获取研究奠定了基础。
Resumo:
对水下滑翔机器人SEA-WING的定常滑翔运动和空间定常螺旋回转运动进行机理分析,针对其特定水动力系数进行仿真,得出其运动机理特性。在此基础上,通过湖试实验数据对仿真结果进行验证,认为对于定常滑翔运动,以约36°航迹角滑行可得到最大水平速度;在相同航迹角航行情况下,水平方向速度随净浮力的增大而增大。对于定常回转运动,回转半径由载体的质量、俯仰角、水动力参数、横滚角确定。在质量和俯仰角保持不变条件下,横滚角对回转半径的影响较明显,系统的回转半径可以通过控制横滚角来实现的。
Resumo:
描述了水下滑翔机器人3个运动调节机构的设计,即浮力调节机构、俯仰调节机构和横滚调节机构,分析了运动调节机构与运动之间的关系.提出了采用CFX水动力计算软件分析水下滑翔机器人运动性能的方法.根据CFX计算结果,用最小二乘法参数辨识方法辨识出定常滑翔运动的水动力参数.简化了空间螺旋回转运动过程,通过CFX水动力计算方法进行回转特性分析,估算回转半径.
Resumo:
Baijiahai uplift is an important hydrocarbon accumulation belt in eastern Jungger Basin, on which Cainan oilfield and lithologic hydrocarbon reservoir named Cai 43 have been discovered and both of them share the same target formation of Jurassic. However, in the subsequent exploration at this region, several wells that designed for lithologic traps of Jurassic were eventually failed, and that indicates the controlling factors of lithologic reservoir distribution are far more complicated than our previous expectation. This dissertation set the strata of the Jurassic in well Cai 43 region as the target, and based on the integrated analysis of structure evolution、fault sealing ability、simulations of sedimentary microfacies and reservoir beds、distribution analysis of high porosity-high permeability carrier beds、drive forces of hydrocarbons、preferential conduit system and conduit model as well as critical values of the reservoir physical properties for hydrocarbon charging, a special method that different from the conventional way to predict favorable lithologic traps was established. And with this method the controlling factors of the hydrocarbon reservoirs formation are figured out, and further more, the favorable exploration targets are point out. At Baijiahai uplift, fault plays as a crucial factor in the process of the hydrocarbon reservoir formation. In this study, it is found out that the availability of a fault that work as the seal for oil and gas are different. The critical value of the lateral mudstone smear factor (Kssf), which is used to measure the lateral sealing ability of fault, for oil is 3.9 while that for gas is 2.1; and the critical value of vertical sealing factor (F), which similarly a measurement for the vertical sealing ability of fault, for oil is 7.3 while that for gas is 5.1. Dongdaohaizi fault belt that possessed well lateral sealing ability since later Cretaceous have bad vertical sealing ability in later Cretaceous, however, it turns to be well now. Based on the comparison of the physical properties that respectively obtained from electronic log calculating、conventional laboratory rock analysis and the additive-pressure bearing laboratory rock analysis, we established the functions through which the porosity and permeability obtained though conventional method can be converted to the values of the subsurface conditions. With this method, the porosity and permeability of the Jurassic strata at the time of previous Tertiary and that in nowadays are reconstructed respectively, and then the characteristics of the distribution of high porosity-high permeability carrier beds in the evolution processes are determined. With the result of these works, it is found that both well Cai 43 region and Cainan oilfield are located on the preferential conduit direction of hydrocarbon migration. This conclusion is consistent with the result of the fluid potential analysis, in which fluid potential of nowadays and that of later Cretaceous are considered. At the same times, experiment of hydrocarbon injection into the addictive-pressure bearing rock is designed and conducted, from which it is found that, for mid-permeability cores of Jurassic, 0.03MPa is the threshold values for the hydrocarbon charging. And here, the conception of lateral pressure gradient is proposed to describe the lateral driving force for hydrocarbon migration. With this conception, it is found that hydrocarbons largely distributed in the areas where lateral pressure gradient is greater than 0. 03MPa/100m. Analysis of critical physical properties indicated that the value of the critical porosity and critical permeability varied with burial depth, and it is the throat radius of a certain reservoir bed that works as a key factor in controlling hydrocarbon content. Three parameters are proposed to describe the critical physical properties in this dissertation, which composite of effective oil-bearing porosity、effective oil-bearing permeability and preferential flow coefficient. And found that critical physical properties, at least to some extent, control the hydrocarbon distribution of Jurassic in Baijiahai uplift. Synthesize the content discussed above, this dissertation analyzed the key factors i.e., critical physical properties、driving force、conduit system and fluid potential, which controlled the formation of the lithologic reservoir in Baijiahai uplift. In all of which conduit system and fluid potential determined the direction of hydrocarbon migration, and substantially they are critical physical properties of reservoir bed and the lateral pressure gradient that controlled the eventually hydrocarbon distribution. At the same times, sand bodies in the major target formation that are recognized by reservoir bed simulation are appraised, then predict favorite direction of the next step exploration of lithologic reservoir.
Resumo:
Now low porosity and low permeability reservoir is one of the main targets of exploration for the onshore oilfields of China. Most of the reservoirs are none flowing because of bad formation percolation condition, poor gas oil ratio , low formation pressure coefficient and other factors. In the recent years, a number of domestic oilfields have carried out some research work and achieved some success on oil testing and production technology in such formation. But by now, there is still no systematic and mature technology, particularly testing technology in none flowing formation is still needed further study. Based on study the key problem of well testing and interpretation technology in none flowing formation, solve the important problems in well testing technology, continuously improve and innovate geological information acquisition technology for none flowing reservoir, accurately acquire boundary information and evaluate reservoir flow characteristics. Its wide application remarkable result has shown. The main results and cognitions obtained from research are as follows: 1. This new technology research results help solve the occurrent problems in well testing process for none flowing formations, such as small investigation radius, poor representative of interpretation results from the poor data, low level application of interpretation results. This new technology helps create favorable conditions for early precise reservoir evaluation and reduction of the risk of exploration. 2. The technological difficulties for none flowing well testing are successfully solved by using none flowing formation combined mechanical tool string .This method has been proved by its applications to be able to improve the efficiency of the testing and the quantity of the acquired test data ,and so as to enhance the application of the interpretation results of the test in development of oil fields. 3. The application of the rotary formation tester, selective test valve, well testing string and their allier tools help to resolve problems such as the operation of opening and shutting-in the well under different well conditions, to broaden the scope of well test technology for none flowing formations. 4. Refined Testing Technique for production Wells has greatly shortened the testing dwration and improved the efficiency and accuracy of operation, enriched test results, and at the same time created conditions for conducting multi-well interference well testing.
Resumo:
On the basis of the character of sedimentation and reservoir researching as well as diagenesis, using conventional and update testing measures, classificati-on and evaluation of the tesla low permeability reservoir in Ordos Basin is pr-esented. From Chang 8 to Chang 4+5 oil formations, four facies developed, includi-ng alluvial fan facies, delta facies, lake facies as well as density current. They were controlled by the northeastern, the southwest, the southern and the northwestern provenances. Distributary channel underwater and mouth bar of delta fr-ont are the main reservoirs. Detrital component has the different character in s-outh and in north. Sedimentary system in the northeastern part has more felds-par and less quartz. Sedimentary system in the southern part has more quartz and less feldspar. Because of sedimentation and diagenesis, the oil formations in region of interest formed the different features of pore array of the tesla l-ow permeability reservoirs. After researching, it is found that the active porosity and the main throat radius of Chang 4+5 are the highest, and they are positive correlation with per-meability. The exponent of flowing interval falls in the sortorder: Chang 8, Chang 4+5, Chang 6, Chang 7. Using clustering procedure and quaternion, the reservoirs of Yanchang for-mation in Ordos Basin are divided into five types. Ⅰ-good reservoirs and Ⅱ-appreciably good reservoirs occur in distributary channel and mouth bar. Ⅲ-poor reservoirs and Ⅳ-poorer reservoirs exist in natural levee, crevasse splay under-water and turbidity fan. It is forecasted that the oil area in Ⅰ-good reservoirs is about 4336.68 square kilometers, and the oil area in Ⅱ-appreciably good reservoirs is 28013.28 square kilometers or so, and the oil area in Ⅲ-poor rese-rvoirs is 28538.05 square kilometers more or less.
Resumo:
Increasing attentions have been paid to the subsurface geological storage for CO2 in view of the huge storage capacity of subsurface reservoirs. The basic requirement for subsurface CO2 storage is that the CO2 should be sequestrated as supercritical fluids (physical trapping), which may also interact with ambient reservoir rocks and formation waters, forming new minerals (chemical trapping). In order to the effective, durable and safe storage for CO2, enough storage space and stable sealing caprock with strong sealing capacity are necessitated, in an appropriate geological framework. Up till now, hydrocarbon reservoirs are to the most valid and appropriate CO2 storage container, which is well proven as the favorable compartment with huge storage capacity and sealing condition. The thesis focuses on two principal issues related to the storage and sealing capacity of storage compartment for the Qingshankou and Yaojia formations in the Daqingzijing block, Southern Songliao Basin, which was selected as the pilot well site for CO2-EOR storage. In the operation area, three facies, including deltaic plain, deltaic front and subdeep-deep lake facies associations, are recognized, in which 11 subfacies such as subaqueous distributary channel, river- mouth bar, interdistributary bay, sheet sandbody, crevasse splay and overflooding plain are further identified. These subfacies are the basic genetic units in the reservoir and sealing rocks. These facies further comprise the retrogradational and progradational depositional cycles, which were formed base- level rise and fall, respectively. During the regressive or lake lowstand stage, various sands including some turbidites and fans occurred mostly at the bottom of the hinged slope. During the progradation stage, these sands became smaller in size and episodically stepped backwards upon the slope, with greatly expanded and deeped lake. However, most of Cretaceous strata in the study area, localized in the basin centre under this stage, are mainly composed of grey or grizzly siltstones and grey or dark grey mudstones intercalated with minor fine sandstones and purple mudstones. On the base of borehole and core data, these siltstones are widespread, thin from 10 to 50 m thick, good grain sorting, and have relative mature sedimentary structures with graded bedding and cross- lamination or crossbeds such as ripples, which reflect strong hydrodynamic causes. Due to late diagenesis, pores are not widespread in the reservoirs, especially the first member of Qingshankou formation. There are two types of pores: primary pore and secondary cores. The primary pores include intergranular pores and micropores, and the secondary pores include emposieus and fracture pores. Throat channels related to pores is also small and the radius of throat in the first, second and third member of Qingshankou formation is only 0.757 μm, 0.802 μm and 0.631 μm respectively. In addition, based on analyzing the probability plot according to frequency of occurrence of porosity and permeability, they appear single- peaked distribution, which reflects strong hetero- geneity. All these facts indicate that the conditions of physical property of reservoirs are not better. One reason may be provided to interpret this question is that physical property of reservoirs in the study area is strong controlled by the depositional microfacies. From the statistics, the average porosity and permeability of microfacies such as subaqueous distributary channel, channel mouth bar, turbidites, is more than 9 percent and 1md respectively. On the contrary, the average porosity and permeability of microfacies including sand sheet, flagstone and crevasse splay are less than 9 percent and 0.2md respectively. Basically, different hydrodynamic environment under different microfacies can decide different physical property. According to the reservoir models of the first member of Qingshankou formation in the No. well Hei47 block, the character of sedimentary according to the facies models is accord to regional disposition evolution. Meantime, the parameter models of physical property of reservoir indicate that low porosity and low permeability reservoirs widespread widely in the study area, but the sand reservoirs located in the channels are better than other places and they are the main sand reservoirs. The distribution and sealing ability of fault- fractures and caprock are the key aspects to evaluate the stable conditions of compartments to store CO2 in the study area. Based on the core observation, the fractures widespread in the study area, especially around the wells, and most of them are located in the first and second member of Qingshankou formation, almost very few in the third member of Qingshankou formation and Yaojia formation instead. In addition, analyzing the sealing ability of eleven faults in the three-dimensional area in the study area demonstrates that most of faults have strong sealing ability, especially in the No. well Hei56 and Qing90-27. To some extent, the sealing ability of faults in the No. well Hei49, Qing4-6 and Qing84-29 are worse than others. Besides, the deposition environment of most of formations in the study area belongs to moderately deep and deep lake facies, which undoubtedly take advantage to caprocks composed of mudstones widespread and large scale under this deposition environment. In the study area, these mudstones distribute widely in the third member of Qingshankou formation, Yaojia and Nenjiang formation. The effective thickness of mudstone is nearly ~550m on an average with few or simple faults and fractures. In addition, there are many reservoir beds with widely- developed insulated interbeds consist of mudstones or silty mudstone, which can be the valid barrier to CO2 upper movement or leakage through diffusion, dispersion and convection. Above all, the closed thick mud caprock with underdeveloped fractures and reservoir beds can be taken regard as the favorable caprocks to provide stable conditions to avoid CO2 leakage.
Resumo:
Characterization of Platinum Group Elements (PGE) has been applied to earth, space and environmental sciences. However, all these applications are based on a basic prerequisite, i.e. their concentration or ratio in the research objects can be accurately and precisely determined. In fact, development in these related studies is a great challenge to the analytical chemistry of the PGE because their content in the geological sample (non-mineralized) is often extremely low, range from ppt (10~(-12)g/g) to ppt (10~(-9)g/g). Their distribution is highly heterogeneous, usually concentrating in single particle or phase. Therefore, the accurate determination of these elements remains a problem in analytical chemistry and it obstructs the research on geochemistry of PGE. A great effort has been made in scientific community to reliable determining of very low amounts of PGE, which has been focused on to reduce the level of background in used reagents and to solve probable heterogeneity of PGE in samples. Undoubtedly, the fire-assay method is one of the best ways for solving the heterogeneity, as a large amount of sample weight (10-50g) can be hold. This page is mainly aimed at development of the methodology on separation, concentration and determination of the ultra-trace PGE in the rock and peat samples, and then they are applied to study the trace of PGE in ophiolite suite, in Kudi, West Kunlun and Tunguska explosion in 1908. The achievements of the study are summarized as follows: 1. A PGE lab is established in the Laboratory of Lithosphere Tectonic Evolution, IGG, CAS. 2. A modified method of determination of PGE in geological samples using NiS Fire-Assay with inductively coupled plasma-mass spectrometry (ICP-MS) is set up. The technical improvements are made as following: (1) investigating the level of background in used reagents, and finding the contents of Au, Pt and Pd in carbonyl nickel powder are 30, 0.6 and 0.6ng/g, respectively and 0.35, 7.5 and 6.4ng, respectively in other flux, and the contents of Ru, Rh, Os in whole reagents used are very low (below or near the detection limits of ICP-MS); (2) measuring the recoveries of PGE using different collector (Ni+S) and finding 1.5g of carbonyl nickel is effective for recovering the PGE for 15g samples (recoveries are more than 90%), reducing the inherent blank value due to impurities reagents; (3) direct dissolving nickel button in Teflon bomb and using Te-precipitation, so reducing the loss of PGE during preconcentration process and improving the recoveries of PGE (above 60% for Os and 93.6-106.3% for other PGE, using 2g carbonyl nickel); (4) simplifying the procedure of analyzing Osmium; (5)method detection limits are 8.6, 4.8, 43, 2.4, 82pg/g for 15g sample size ofRu, Rh, Pd, Ir, Pt, respectively. 3. An analytical method is set up to determine the content of ultra-trace PGE in peat samples. The method detection limits are 0.06, 0.1, 0.001, 0.001 and 0.002ng/mL for Ru, Rh, Pd, Ir and Pt, respectively. 4. Distinct anomaly of Pd and Os are firstly found in the peat sampling near the Tunguska explosion site, using the analytical method. 5. Applying the method to the study on the origin of Tunguska explosion and making the following conclusions: (1) these excess elements were likely resulted from the Tunguska Cosmic Body (TCB) explosion of 1908. (2) The Tunguska explosive body was composed of materials (solid components) similar to C1 chondrite, and, most probably, a cometary object, which weighed more than 10~7 tons and had a radius of more than 126 m. 6. The analysis method about ultra-trace PGE in rock samples is successfully used in the study on the characteristic of PGE in Kudi ophiolite suite and the following conclusions are made: (1) The difference of the mantle normalization of PGE patterns between dunite, harzburgite and lherzolite in Kudi indicates that they are residual of multi-stage partial melt of the mantle. Their depletion of Ir at a similar degree probably indicates the existence of an upper mantle depleted Ir. (2) With the evolution of the magma produced by the partial melt of the mantle, strong differentiation has been shown between IPGE and PPGE; and the differentiation from pyroxenite to basalt would have been more and more distinct. (3) The magma forming ophiolite in Kudi probably suffered S-saturation process.
Resumo:
Formation resistivity is one of the most important parameters to be evaluated in the evaluation of reservoir. In order to acquire the true value of virginal formation, various types of resistivity logging tools have been developed. However, with the increment of the proved reserves, the thickness of interest pay zone is becoming thinner and thinner, especially in the terrestrial deposit oilfield, so that electrical logging tools, limited by the contradictory requirements of resolution and investigation depth of this kinds of tools, can not provide the true value of the formation resistivity. Therefore, resitivity inversion techniques have been popular in the determination of true formation resistivity based on the improving logging data from new tools. In geophysical inverse problems, non-unique solution is inevitable due to the noisy data and deficient measurement information. I address this problem in my dissertation from three aspects, data acquisition, data processing/inversion and applications of the results/ uncertainty evaluation of the non-unique solution. Some other problems in the traditional inversion methods such as slowness speed of the convergence and the initial-correlation results. Firstly, I deal with the uncertainties in the data to be processed. The combination of micro-spherically focused log (MSFL) and dual laterolog(DLL) is the standard program to determine formation resistivity. During the inversion, the readings of MSFL are regarded as the resistivity of invasion zone of the formation after being corrected. However, the errors can be as large as 30 percent due to mud cake influence even if the rugose borehole effects on the readings of MSFL can be ignored. Furthermore, there still are argues about whether the two logs can be quantitatively used to determine formation resisitivities due to the different measurement principles. Thus, anew type of laterolog tool is designed theoretically. The new tool can provide three curves with different investigation depths and the nearly same resolution. The resolution is about 0.4meter. Secondly, because the popular iterative inversion method based on the least-square estimation can not solve problems more than two parameters simultaneously and the new laterolog logging tool is not applied to practice, my work is focused on two parameters inversion (radius of the invasion and the resistivty of virgin information ) of traditional dual laterolog logging data. An unequal weighted damp factors- revised method is developed to instead of the parameter-revised techniques used in the traditional inversion method. In this new method, the parameter is revised not only dependency on the damp its self but also dependency on the difference between the measurement data and the fitting data in different layers. At least 2 iterative numbers are reduced than the older method, the computation cost of inversion is reduced. The damp least-squares inversion method is the realization of Tikhonov's tradeoff theory on the smooth solution and stability of inversion process. This method is realized through linearity of non-linear inversion problem which must lead to the dependency of solution on the initial value of parameters. Thus, severe debates on efficiency of this kinds of methods are getting popular with the developments of non-linear processing methods. The artificial neural net method is proposed in this dissertation. The database of tool's response to formation parameters is built through the modeling of the laterolog tool and then is used to training the neural nets. A unit model is put forward to simplify the dada space and an additional physical limitation is applied to optimize the net after the cross-validation method is done. Results show that the neural net inversion method could replace the traditional inversion method in a single formation and can be used a method to determine the initial value of the traditional method. No matter what method is developed, the non-uniqueness and uncertainties of the solution could be inevitable. Thus, it is wise to evaluate the non-uniqueness and uncertainties of the solution in the application of inversion results. Bayes theorem provides a way to solve such problems. This method is illustrately discussed in a single formation and achieve plausible results. In the end, the traditional least squares inversion method is used to process raw logging data, the calculated oil saturation increased 20 percent than that not be proceed compared to core analysis.
Resumo:
Low resistivity reservoir is a special reservoir which is different from normal reservoir in identification and evaluation.Through core experiment and analysis, the achievement of which resistivity is resulted from clay additive electric conductivities and high bound water saturation in Junggar basin is gained. For accurately evaluating low resistivity, a good many of experiment have been completed, such as resistivity index and formation factor in hi^jher temperature and higher pressure, semi-permeability board, cation exchange, bound water, NMR (nucleus magnetism response), non-Nad water in different temperature and salinity, the experiments result show that lower resistivity has complex relation with these electric-parameters and chloric ion content in non-NaCl water.Based on comprehensive interpretation of NMR and normal resistivity data, the volume of moved water, bound water, moved oil and residual oil in the strata can be determined quantitatively and which have significant influence on reservoir recognition and perforation optimized.Experiment data (SEM mold, thin section, X ray diffraction, mercury penetration) can be used to analysis low resistivity forming and the relation between low resistivity and pore texture, to set up relation between porosity, permeability and petrophysical property. The reservoir was sorted, evaluated and described. The oil bedding in southern margin of Junggar basin is low porosity, low resistivity reservoir.Based on invasion theory of electric well-logging, modelling and inversion of resistivity well-logging are accomplished. For enhancing low resistivity resulted from higher bound water saturation and cation exchange, invasion period, invasion radius, the relation between fluid distribution in pore and response of laterolog logging have been studied. Virgin zone resistivity, invasion zone resistivity and invasion radius were inversed and which enhanced evaluation accuracy of reservoir. The method was used to process well-logging data in Luliang oilfield and southern margin in Junggar basin, and reservoir resistivity was enhanced effectively, appropriate oil saturation gained and it has better effect on oil exploration.
Resumo:
Gaussian beam is the asymptotic solution of wave equation concentred at the central ray. The Gaussian beam ray tracing method has many advantages over ray tracing method. Because of the prevalence of multipath and caustics in complex media, Kirchhoff migration usually can not get satisfactory images, but Gaussian beam migration can get better results.The Runge-Kutta method is used to carry out the raytracing, and the wavefront construction method is used to calculate the multipath wavefield. In this thesis, a new method to determine the starting point and initial direction of a new ray is proposed take advantage of the radius of curvature calculated by dynamic ray tracing method.The propagation characters of Gaussian beam in complex media are investigated. When Gaussian beam is used to calculate the Green function, the wave field near the source was decomposed in Gaussian beam in different direction, then the wave field at a point is the superposition of individual Gaussian beams.Migration aperture is the key factor for Kirchhoff migration. In this thesis, the criterion for the choice of optimum aperture is discussed taking advantage of stationary phase analysis. Two equivalent methods are proposed, but the second is more preferable.Gaussian beam migration based on dip scanning and its procedure are developed. Take advantage of the travel time, amplitude, and takeoff angle calculated by Gaussian beam method, the migration is accomplished.Using the proposed migration method, I carry out the numerical calculation of simple theoretical model, Marmousi model and field data, and compare the results with that of Kirchhoff migration. The comparison shows that the new Gaussian beam migration method can get a better result over Kirchhoff migration, with fewer migration noise and clearer image at complex structures.
Resumo:
The micro-pore configurations on the matrix surface were studied by SEM. The matrix of molten carbonate fuel cell (MCFC) performance was also improved by the better coordination between the reasonable radius of the micro-pores and the higher porosity of the cell matrix. The many and complicated micro-pore configurations in the cell matrix promoted the volatilization of the organic additives and the burn of polyvinyl butyral (PVB). The smooth volatilization of the organic additives and the complete burn of PVB were the significant factors for the improved MCFC performance. Oxygen diffusion controlled-burn mechanism of PVB in the cell matrix was proposed. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
D.J. Currie, M.H. Lee and R.W. Todd, 'Prediction of Physical Properties of Yeast Cell Suspensions using Dielectric Spectroscopy', Conference on Electrical Insulation and Dielectric Phenomena, (CEIDP 2006), Annual Report, pp 672 ? 675, October 15th -18th 2006, Kansas City, Missouri, USA. Organised by IEEE Dielectrics and Electrical Insulation Society.
Resumo:
Shock wave lithotripsy is the preferred treatment modality for kidney stones in the United States. Despite clinical use for over twenty-five years, the mechanisms of stone fragmentation are still under debate. A piezoelectric array was employed to examine the effect of waveform shape and pressure distribution on stone fragmentation in lithotripsy. The array consisted of 170 elements placed on the inner surface of a 15 cm-radius spherical cap. Each element was driven independently using a 170 individual pulsers, each capable of generating 1.2 kV. The acoustic field was characterized using a fiber optic probe hydrophone with a bandwidth of 30 MHz and a spatial resolution of 100 μm. When all elements were driven simultaneously, the focal waveform was a shock wave with peak pressures p+ =65±3MPa and p−=−16±2MPa and the −6 dB focal region was 13 mm long and 2 mm wide. The delay for each element was the only control parameter for customizing the acoustic field and waveform shape, which was done with the aim of investigating the hypothesized mechanisms of stone fragmentation such as spallation, shear, squeezing, and cavitation. The acoustic field customization was achieved by employing the angular spectrum approach for modeling the forward wave propagation and regression of least square errors to determine the optimal set of delays. Results from the acoustic field customization routine and its implications on stone fragmentation will be discussed.