949 resultados para quantitative descriptive analysis
Resumo:
Introduction Lower pole kidney stones represent at time a challenge for the urologist. The gold standard treatment for intrarenal stones <2 cm is Extracorporeal Shock Wave Lithotripsy (ESWL) while for those >2 cm is Percutaneous Nephrolithotomy (PCNL). The success rate of ESWL, however, decreases when it is employed for lower pole stones, and this is particularly true in the presence of narrow calices or acute infundibular angles. Studies have proved that ureteroscopy (URS) is an efficacious alternative to ESWL for lower pole stones <2 cm, but this is not reflected by either the European or the American guidelines. The aim of this study is to present the results of a large series of flexible ureteroscopies and PCNLs for lower pole kidney stones from high-volume centers, in order to provide more evidences on the potential indications of the flexible ureteroscopy for the treatment of kidney stones. Materials and Methods A database was created and the participating centres retrospectively entered their data relating to the percutaneous and flexible ureteroscopic management of lower pole kidney stones. Patients included were treated between January 2005 and January 2010. Variables analyzed included case load number, preoperative and postoperative imaging, stone burden, anaesthesia (general vs. spinal), type of lithotripter, access location and size, access dilation type, ureteral access sheath use, visual clarity, operative time, stone-free rate, complication rate, hospital stay, analgesic requirement and follow-up time. Stone-free rate was defined as absence of residual fragments or presence of a single fragment <2 mm in size at follow-up imaging. Primary end-point was to test the efficacy and safety of flexible URS for the treatment of lower pole stones; the same descriptive analysis was conducted for the PCNL approach, as considered the gold standard for the treatment of lower pole kidney stones. In this setting, no statistical analysis was conducted owing to the different selection criteria of the patients. Secondary end-point consisted in matching the results of stone-free rates, operative time and complications rate of flexible URS and PCNL in the subgroup of patients harbouring lower pole kidney stones between 1 and 2 cm in the higher diameter. Results A total 246 patients met the criteria for inclusion. There were 117 PCNLs (group 1) and 129 flexible URS (group 2). Ninety-six percent of cases were diagnosed by CT KUB scan. Mean stone burden was 175±160 and 50±62 mm2 for groups 1 and 2, respectively. General anaesthesia was induced in 100 % and 80% of groups 1 and 2, respectively. Pneumo-ultrasonic energy was used in 84% of cases in the PCNL group, and holmium laser in 95% of the cases in the flexible URS group. The mean operative time was 76.9±44 and 63±37 minutes for groups 1 and 2 respectively. There were 12 major complications (11%) in group 1 (mainly Grade II complications according to Clavidien classification) and no major complications in group 2. Mean hospital stay was 5.7 and 2.6 days for groups 1 and 2, respectively. Ninety-five percent of group 1 and 52% of group 2 required analgesia for a period longer than 24 hours. Intraoperative stone-free rate after a single treatment was 88.9% for group 1 and 79.1% for group 2. Overall, 6% of group 1 and 14.7% of group 2 required a second look procedure. At 3 months, stone-free rates were 90.6% and 92.2% for groups 1 and 2, respectively, as documented by follow-up CT KUB (22%) or combination of intra-venous pyelogram, regular KUB and/or kidney ultrasound (78%). In the subanalysis conducted comparing 82 vs 65 patients who underwent PCNL and flexible URS for lower pole stones between 1 and 2 cm, intreoperative stone-free rates were 88% vs 68% (p= 0.03), respectively; anyway, after an auxiliary procedure which was necessary in 6% of the cases in group 1 and 23% in group 2 (p=0.03), stone-free rates at 3 months were not statistically significant (91.5% vs 89.2%; p=0.6). Conversely, the patients undergoing PCNL maintained a higher risk of complications during the procedure, with 9 cases observed in this group versus 0 in the group of patients treated with URS (p=0.01) Conclusions These data highlight the value of flexible URS as a very effective and safe option for the treatment of kidney stones; thanks to the latest generation of flexible devices, this new technical approach seems to be a valid alternative in particular for the treatment of lower pole kidney stones less than 2 cm. In high-volume centres and in the hands of skilled surgeons, this technique can approach the stone-free rates achievable through PCNL in lower pole stones between 1 and 2 cm, with a very low risk of complications. Furthermore, the results confirm the high success rate and relatively low morbidity of modern PCNL for lower pole stones, with no difference detectable between the prone and supine position.
Resumo:
DcuS is a membrane-integral sensory histidine kinase involved in the DcuSR two-component regulatory system in Escherichia coli by regulating the gene expression of C4-dicarboxylate metabolism in response to external stimuli. How DcuS mediates the signal transduction across the membrane remains little understood. This study focused on the oligomerization and protein-protein interactions of DcuS by using quantitative Fluorescence Resonance Energy Transfer (FRET) spectroscopy. A quantitative FRET analysis for fluorescence spectroscopy has been developed in this study, consisting of three steps: (1) flexible background subtraction to yield background-free spectra, (2) a FRET quantification method to determine FRET efficiency (E) and donor fraction (fD = [donor] / ([donor]+[acceptor])) from the spectra, and (3) a model to determine the degree of oligomerization (interaction stoichiometry) in the protein complexes based on E vs. fD. The accuracy and applicability of this analysis was validated by theoretical simulations and experimental systems. These three steps were integrated into a computer procedure as an automatic quantitative FRET analysis which is easy, fast, and allows high-throughout to quantify FRET accurately and robustly, even in living cells. This method was subsequently applied to investigate oligomerization and protein-protein interactions, in particular in living cells. Cyan (CFP) and yellow fluorescent protein (YFP), two spectral variants of green fluorescent protein, were used as a donor-acceptor pair for in vivo measurements. Based on CFP- and YFP-fusions of non-interacting membrane proteins in the cell membrane, a minor FRET signal (E = 0.06 ± 0.01) can be regarded as an estimate of direct interaction between CFP and YFP moieties of fusion proteins co-localized in the cell membrane (false-positive). To confirm if the FRET occurrence is specific to the interaction of the investigated proteins, their FRET efficiency should be clearly above E = 0.06. The oligomeric state of DcuS was examined both in vivo (CFP/YFP) and in vitro (two different donor-acceptor pairs of organic dyes) by three independent experimental systems. The consistent occurrence of FRET in vitro and in vivo provides the evidence for the homo-dimerization of DcuS as full-length protein for the first time. Moreover, novel interactions (hetero-complexes) between DcuS and its functionally related proteins, citrate-specific sensor kinase CitA and aerobic dicarboxylate transporter DctA respectively, have been identified for the first time by intermolecular FRET in vivo. This analysis can be widely applied as a robust method to determine the interaction stoichiometry of protein complexes for other proteins of interest labeled with adequate fluorophores in vitro or in vivo.
Resumo:
„Wer studierte was wann und warum?“ Diese Formulierung impliziert die Fragestellung und die Themenbereiche der Arbeit, die einen Beitrag zur Diskussion von Bildungsentscheidungen auf gesellschaftlicher, organisationaler und individueller Ebene leistet. Ausgangspunkt der Analyse ist eine ausführliche theoretische Einbettung des Themas anhand verschiedener Konzepte und der Aufarbeitung des Forschungsstandes. Dabei werden sozialstrukturelle Merkmale, die Bedeutung von Lebensorientierungen und der Komplex der individuellen Motivationslagen diskutiert und u.a. in Bezug zur handlungstheoretischen Unterscheidung der Um-zu- und Weil-Motive von Alfred Schütz gesetzt. Dieses Konzept und die daraus resultierenden Hypothesen werden in einer quantitativ-empirischen Analyse untersucht. Datengrundlage ist das Studierendensurvey der AG Hochschulforschung der Uni Konstanz. Anhand von binären logistischen Regressionsanalysen werden bestimmte Einflussstrukturen und fachspezifische Profile ermittelt. Insbesondere die Konzeption der intrinsischen und extrinsischen Motivationen zeichnet dabei deutliche Unterscheidungen zwischen den Fächern. Auch in der Betrachtung des Zeitraumes 1985-2007 werden Veränderungen der Einflussstrukturen der Studienfachwahl deutlich, wie z.B. die schwindende Bedeutung der sozialen Herkunft für die Studienfachwahl zeigt. Abschließend wird der Zusammenhang der Einflussstrukturen der Studienfachwahl mit der Studienzufriedenheit analysiert. Auch für die Zufriedenheit von Studierenden und damit den Studienerfolg sind bestimmte Strukturen der Studienfachwahl von Bedeutung.
Resumo:
The interplay of hydrodynamic and electrostatic forces is of great importance for the understanding of colloidal dispersions. Theoretical descriptions are often based on the so called standard electrokinetic model. This Mean Field approach combines the Stokes equation for the hydrodynamic flow field, the Poisson equation for electrostatics and a continuity equation describing the evolution of the ion concentration fields. In the first part of this thesis a new lattice method is presented in order to efficiently solve the set of non-linear equations for a charge-stabilized colloidal dispersion in the presence of an external electric field. Within this framework, the research is mainly focused on the calculation of the electrophoretic mobility. Since this transport coefficient is independent of the electric field only for small driving, the algorithm is based upon a linearization of the governing equations. The zeroth order is the well known Poisson-Boltzmann theory and the first order is a coupled set of linear equations. Furthermore, this set of equations is divided into several subproblems. A specialized solver for each subproblem is developed, and various tests and applications are discussed for every particular method. Finally, all solvers are combined in an iterative procedure and applied to several interesting questions, for example, the effect of the screening mechanism on the electrophoretic mobility or the charge dependence of the field-induced dipole moment and ion clouds surrounding a weakly charged sphere. In the second part a quantitative data analysis method is developed for a new experimental approach, known as "Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy" (TIR-FCCS). The TIR-FCCS setup is an optical method using fluorescent colloidal particles to analyze the flow field close to a solid-fluid interface. The interpretation of the experimental results requires a theoretical model, which is usually the solution of a convection-diffusion equation. Since an analytic solution is not available due to the form of the flow field and the boundary conditions, an alternative numerical approach is presented. It is based on stochastic methods, i. e. a combination of a Brownian Dynamics algorithm and Monte Carlo techniques. Finally, experimental measurements for a hydrophilic surface are analyzed using this new numerical approach.
Resumo:
I present a new experimental method called Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy (TIR-FCCS). It is a method that can probe hydrodynamic flows near solid surfaces, on length scales of tens of nanometres. Fluorescent tracers flowing with the liquid are excited by evanescent light, produced by epi-illumination through the periphery of a high NA oil-immersion objective. Due to the fast decay of the evanescent wave, fluorescence only occurs for tracers in the ~100 nm proximity of the surface, thus resulting in very high normal resolution. The time-resolved fluorescence intensity signals from two laterally shifted (in flow direction) observation volumes, created by two confocal pinholes are independently measured and recorded. The cross-correlation of these signals provides important information for the tracers’ motion and thus their flow velocity. Due to the high sensitivity of the method, fluorescent species with different size, down to single dye molecules can be used as tracers. The aim of my work was to build an experimental setup for TIR-FCCS and use it to experimentally measure the shear rate and slip length of water flowing on hydrophilic and hydrophobic surfaces. However, in order to extract these parameters from the measured correlation curves a quantitative data analysis is needed. This is not straightforward task due to the complexity of the problem, which makes the derivation of analytical expressions for the correlation functions needed to fit the experimental data, impossible. Therefore in order to process and interpret the experimental results I also describe a new numerical method of data analysis of the acquired auto- and cross-correlation curves – Brownian Dynamics techniques are used to produce simulated auto- and cross-correlation functions and to fit the corresponding experimental data. I show how to combine detailed and fairly realistic theoretical modelling of the phenomena with accurate measurements of the correlation functions, in order to establish a fully quantitative method to retrieve the flow properties from the experiments. An importance-sampling Monte Carlo procedure is employed in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for both modern desktop PC machines and massively parallel computers. The latter allows making the data analysis within short computing times. I applied this method to study flow of aqueous electrolyte solution near smooth hydrophilic and hydrophobic surfaces. Generally on hydrophilic surface slip is not expected, while on hydrophobic surface some slippage may exists. Our results show that on both hydrophilic and moderately hydrophobic (contact angle ~85°) surfaces the slip length is ~10-15nm or lower, and within the limitations of the experiments and the model, indistinguishable from zero.
Resumo:
Fino dagli albori della metodica scientifica, l’osservazione e la vista hanno giocato un ruolo fondamentale. La patologia è una scienza visiva, dove le forme, i colori, le interfacce e le architetture di organi, tessuti, cellule e componenti cellulari guidano l’occhio del patologo e ne indirizzano la scelta diagnostico-classificativa. L’osservazione del preparato istologico in microscopia ottica si attua mediante l’esame e la caratterizzazione di anomalie ad ingrandimenti progressivamente crescenti, a diverse scale spaziali, che partono dalla valutazione dell’assetto architettonico sovracellulare, per poi spostarsi ad investigare e descrivere le cellule e le peculiarità citomorfologiche delle stesse. A differenza di altri esami di laboratorio che sono pienamente quantificabili, l’analisi istologica è intrinsecamente soggettiva, e quindi incline ad un alto grado di variabilità nei risultati prodotti da differenti patologi. L’analisi d’immagine, l’estrazione da un’immagine digitale di contenuti utili, rappresenta una metodica oggettiva, valida e robusta ormai largamente impiegata a completamento del lavoro del patologo. Si sottolinea come l’analisi d’immagine possa essere vista come fase descrittiva quantitativa di preparati macroscopici e microscopici che poi viene seguita da una interpretazione. Nuovamente si sottolinea come questi descrittori siano oggettivi, ripetibili e riproducibili, e non soggetti a bassa concordanza inter operatore. La presente tesi si snoda attraverso un percorso concettuale orientato ad applicazioni di analisi d’immagine e patologia quantitativa che parte dalle applicazioni più elementari (densità, misure lineari), per arrivare a nozioni più avanzate, quali lo studio di complessità delle forme mediante l’analisi frattale e la quantificazione del pattern spaziale di strutture sovracellulari.
Resumo:
Die vorliegende Arbeit untersucht, in wie weit sich sozioökonomische Entwicklung und die Einbindung in Globalisierungsprozesse verantwortlich für die demokratische Entwicklung postkommunistischer Transformationsstaaten zeigen. Zu diesem Zweck wird ein theoretisches Modell hergeleitet, welches die klassische Modernisierungstheorie um neuere Ansätze erweitert und um Aspekte der Globalisierungsforschung ergänzt. Die empirischen Resultate basieren auf einer quantitativen Betrachtung von 19 postkommunistischen Staaten im Zeitraum zwischen 1996 und 2009. Die Ergebnisse zeigen, dass sich sozioökonomische Entwicklung und ökonomische Aspekte der Globalisierung positiv auf die Demokratieentwicklung auswirken; eine ungleiche Verteilung von Einkommen in der Bevölkerung sowie soziale Globalisierungsaspekte hingegen weisen lediglich marginale Effekte auf.
Resumo:
Moderne ESI-LC-MS/MS-Techniken erlauben in Verbindung mit Bottom-up-Ansätzen eine qualitative und quantitative Charakterisierung mehrerer tausend Proteine in einem einzigen Experiment. Für die labelfreie Proteinquantifizierung eignen sich besonders datenunabhängige Akquisitionsmethoden wie MSE und die IMS-Varianten HDMSE und UDMSE. Durch ihre hohe Komplexität stellen die so erfassten Daten besondere Anforderungen an die Analysesoftware. Eine quantitative Analyse der MSE/HDMSE/UDMSE-Daten blieb bislang wenigen kommerziellen Lösungen vorbehalten. rn| In der vorliegenden Arbeit wurden eine Strategie und eine Reihe neuer Methoden zur messungsübergreifenden, quantitativen Analyse labelfreier MSE/HDMSE/UDMSE-Daten entwickelt und als Software ISOQuant implementiert. Für die ersten Schritte der Datenanalyse (Featuredetektion, Peptid- und Proteinidentifikation) wird die kommerzielle Software PLGS verwendet. Anschließend werden die unabhängigen PLGS-Ergebnisse aller Messungen eines Experiments in einer relationalen Datenbank zusammengeführt und mit Hilfe der dedizierten Algorithmen (Retentionszeitalignment, Feature-Clustering, multidimensionale Normalisierung der Intensitäten, mehrstufige Datenfilterung, Proteininferenz, Umverteilung der Intensitäten geteilter Peptide, Proteinquantifizierung) überarbeitet. Durch diese Nachbearbeitung wird die Reproduzierbarkeit der qualitativen und quantitativen Ergebnisse signifikant gesteigert.rn| Um die Performance der quantitativen Datenanalyse zu evaluieren und mit anderen Lösungen zu vergleichen, wurde ein Satz von exakt definierten Hybridproteom-Proben entwickelt. Die Proben wurden mit den Methoden MSE und UDMSE erfasst, mit Progenesis QIP, synapter und ISOQuant analysiert und verglichen. Im Gegensatz zu synapter und Progenesis QIP konnte ISOQuant sowohl eine hohe Reproduzierbarkeit der Proteinidentifikation als auch eine hohe Präzision und Richtigkeit der Proteinquantifizierung erreichen.rn| Schlussfolgernd ermöglichen die vorgestellten Algorithmen und der Analyseworkflow zuverlässige und reproduzierbare quantitative Datenanalysen. Mit der Software ISOQuant wurde ein einfaches und effizientes Werkzeug für routinemäßige Hochdurchsatzanalysen labelfreier MSE/HDMSE/UDMSE-Daten entwickelt. Mit den Hybridproteom-Proben und den Bewertungsmetriken wurde ein umfassendes System zur Evaluierung quantitativer Akquisitions- und Datenanalysesysteme vorgestellt.
Resumo:
An imaging biomarker that would provide for an early quantitative metric of clinical treatment response in cancer patients would provide for a paradigm shift in cancer care. Currently, nonimage based clinical outcome metrics include morphology, clinical, and laboratory parameters, however, these are obtained relatively late following treatment. Diffusion-weighted MRI (DW-MRI) holds promise for use as a cancer treatment response biomarker as it is sensitive to macromolecular and microstructural changes which can occur at the cellular level earlier than anatomical changes during therapy. Studies have shown that successful treatment of many tumor types can be detected using DW-MRI as an early increase in the apparent diffusion coefficient (ADC) values. Additionally, low pretreatment ADC values of various tumors are often predictive of better outcome. These capabilities, once validated, could provide for an important opportunity to individualize therapy thereby minimizing unnecessary systemic toxicity associated with ineffective therapies with the additional advantage of improving overall patient health care and associated costs. In this report, we provide a brief technical overview of DW-MRI acquisition protocols, quantitative image analysis approaches and review studies which have implemented DW-MRI for the purpose of early prediction of cancer treatment response.
Resumo:
Duchenne muscular dystrophy (DMD) is a hereditary X-linked recessive disorder affecting the synthesis of dystrophin, a protein essential for structural stability in muscle. Dystrophin also occurs in the central nervous system, particularly in the neocortex, hippocampus and cerebellum. Quantitative metabolic analysis by localized (1) H MRS was performed in the cerebellum (12 patients and 15 controls) and a temporo-parietal location (eight patients and 15 controls) in patients with DMD and healthy controls to investigate possible metabolic differences. In addition, the site of individual mutations on the dystrophin gene was analyzed and neuropsychological cognitive functions were examined. Cognitive deficits in the patient group were found in line with earlier investigations, mainly concerning verbal short-term memory, visuo-spatial long-term memory and verbal fluency, but also the full-scale IQ. Causal mutations were identified in all patients with DMD. Quantitative MRS showed consistent choline deficits, in both cerebellar white matter and temporo-parietal cortex, as well as small, but significant, metabolic abnormalities for glutamate and total N-acetyl compounds in the temporo-parietal region. Compartment water analysis did not reveal any abnormalities. In healthy subjects, choline levels were age related in the cerebellum. The choline deficit contrasts with earlier findings in DMD, where a surplus of choline was postulated for the cerebellum. In patients, total N-acetyl compounds in the temporo-parietal region were related to verbal IQ and verbal short-term memory. However, choline, the putative main metabolic abnormality, was not found to be associated with cognitive deficits. Furthermore, in contrast with the cognitive performance, the metabolic brain composition did not depend significantly on whether or not gene mutations concerned the expression of the dystrophin isoform Dp140, leading to the conclusion that the effect of the missing Dp140 isoform on cognitive performance is not mediated through the observed metabolite composition, or is caused by local effects beyond the resolution accessible to MRS investigations.
Resumo:
By measuring the total crack lengths (TCL) along a gunshot wound channel simulated in ordnance gelatine, one can calculate the energy transferred by a projectile to the surrounding tissue along its course. Visual quantitative TCL analysis of cut slices in ordnance gelatine blocks is unreliable due to the poor visibility of cracks and the likely introduction of secondary cracks resulting from slicing. Furthermore, gelatine TCL patterns are difficult to preserve because of the deterioration of the internal structures of gelatine with age and the tendency of gelatine to decompose. By contrast, using computed tomography (CT) software for TCL analysis in gelatine, cracks on 1-cm thick slices can be easily detected, measured and preserved. In this, experiment CT TCL analyses were applied to gunshots fired into gelatine blocks by three different ammunition types (9-mm Luger full metal jacket, .44 Remington Magnum semi-jacketed hollow point and 7.62 × 51 RWS Cone-Point). The resulting TCL curves reflected the three projectiles' capacity to transfer energy to the surrounding tissue very accurately and showed clearly the typical energy transfer differences. We believe that CT is a useful tool in evaluating gunshot wound profiles using the TCL method and is indeed superior to conventional methods applying physical slicing of the gelatine.
Resumo:
Background Injuries from skiing and snowboarding became a major challenge for emergency care providers in Switzerland. In the alpine setting, early assessment of injury and health status is essential for the initiation of adequate means of care and transport. Nevertheless, validated standardized protocols for on-slope triage are missing. This article can assist in understanding the characteristics of injured winter sportsmen and exigencies for future on-slope triage protocols. Methods Six-year review of trauma cases in a tertiary trauma centre. Consecutive inclusion of all injured skiers and snowboarders aged >15 (total sample) years with predefined, severe injury to the head, spine, chest, pelvis or abdomen (study sample) presenting at or being transferred to the study hospital. Descriptive analysis of age, gender and injury pattern. Results Amongst 729 subjects (total sample) injured from skiing or snowboarding, 401 (55%, 54% of skiers and 58% of snowboarders) suffered from isolated limb injury. Amongst the remaining 328 subjects (study sample), the majority (78%) presented with monotrauma. In the study sample, injury to the head (52%) and spine (43%) was more frequent than injury to the chest (21%), pelvis (8%), and abdomen (5%). The three most frequent injury combinations were head/spine (10% of study sample), head/thorax (9%), and spine/thorax (6%). Fisher's exact test demonstrated an association for injury combinations of head/thorax (p < 0.001), head/abdomen (p = 0.019), and thorax/abdomen (p < 0.001). Conclusion The data presented and the findings from previous investigations indicate the need for development of dedicated on-slope triage protocols. Future research must address the validity and practicality of diagnostic on-slope tests for rapid decision making by both professional and lay first responders. Thus, large-scale and detailed injury surveillance is the future research priority.
Resumo:
INTRODUCTION The ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG1 are highly expressed in the placenta in various compartments, including the villous syncytiotrophoblast (V-STB) and foetal endothelial cells. Among other not yet characterized functions, they play a role in the foeto-maternal transport of cholesterol and other lipophilic molecules. In humans, preliminary data suggest expressional changes of ABCA1 and ABCG1 in pathologic gestation, particularly under hypoxic conditions, but a systematic expression analysis in common human pregnancy diseases has never been performed. OBJECTIVES The aim of the present study was to characterize ABCA1 and ABCG1 expression in a large series of pathologic placentas, in particular from preeclampsia (PE) and intrauterine growth restriction (IUGR) which are associated with placental hypoxia. METHODS Placentas from 152 pathological pregnancies, including PE and/or HELLP (n=24) and IUGR (n=21), and 20 normal control placentas were assessed for their ABCA1 and ABCG1 mRNA and protein expression with quantitative RT-PCR and semi-quantitative immunohistochemical analysis, respectively. RESULTS ABCA1 protein expression in the V-STB was significantly less extensive in PE compared with normal controls (<10% of V-STB stained for ABCA1 in 58% PE placentas vs. 25% controls; p=0.035). Conversely, it was significantly more wide-spread in IUGR (>75% of V-STB stained in 57% IUGR placentas vs. 15% controls; p=0.009). Moreover, there was an insignificant trend for increased ABCA1 expression in fetal endothelial cells of stem villi in PE (p=0.0588). ABCA1 staining levels in V-STB were significantly associated with placental histopathological features related with hypoxia: they were decreased in placentas exhibiting syncytial knotting (p=0.033) and decidual vasculopathy (p=0.0437) and increased in low weight placentas (p=0.015). The significant and specific alterations in ABCA1 protein expression found at a specific cellular level were not paralleled by changes in ABCA1 mRNA abundance of total placental tissue. ABCG1 staining was universally extensive in the V-STB of normal placentas, always affecting more than 90% of V-STB surface. In comparison, ABCG1 staining of the V-STB was generally often reduced in pregnancy diseases. In particular, less than 90% of V-STB exhibited ABCG1 staining in 26% of PE placentas (p=0.022) and 35% of IUGR placentas (p=0.003). Similarly to ABCA1, ABCG1 mRNA expression in total placental tissue was not significantly different between controls and PE or IUGR. CONCLUSION ABCA1 and ABCG1 proteins are differentially expressed, with either down- or up-regulation, in the V-STB of placentas exhibiting features of chronic hypoxia, such as in PE and IUGR. This suggests that other factors in addition to hypoxia regulate the expression of placental lipid transporters. The specific changes on a cellular level were masked when only total tissue mRNA was analysed underlining the importance of cell specific expression analysis. The potential effects of decreased placental ABCA1 and ABCG1 expression on foetal nutrition and development remain to be elucidated.
Resumo:
Lung stereology has a long and successful tradition. From mice to men, the application of new stereological methods at several levels (alveoli, parenchymal cells, organelles, proteins) has led to new insights into normal lung architecture, parenchymal remodelling in emphysema-like pathology, alveolar type II cell hyperplasia and hypertrophy and intracellular surfactant alterations as well as distribution of surfactant proteins. The Euler number of the network of alveolar openings, estimated using physical disectors at the light microscopic level, is an unbiased and direct estimate of alveolar number. Surfactant-producing alveolar type II cells can be counted and sampled for local size estimation with physical disectors at a high magnification light microscopic level. The number of their surfactant storage organelles, lamellar bodies, can be estimated using physical disectors at the EM level. By immunoelectron microscopy, surfactant protein distribution can be analysed with the relative labelling index. Together with the well-established classical stereological methods, these design-based methods now allow for a complete quantitative phenotype analysis in lung development and disease, including the structural characterization of gene-manipulated mice, at the light and electron microscopic level.