917 resultados para quadratically hyponormal operators
Resumo:
The inadequate supply of tilapia seed is considered as one of the major present constraints to the development of the culture industry in Nigeria. The floating bamboo net-hapa hatchery/nursery system was observed to be very efficient in the mass production of tilapia (Oreochromis niloticus) fry and fingerlings at Kainji Lake Research Institute. This system was therefore, recommended for small-scale (artisanal) commercial operators consisting of fishermen families in order to increase their productivity and hasten development of rural communities. The economic analysis of this system showed that loan obtained for the recommended scale of operation can be amortized within 2 years of the project. It was emphasized that the operational and managerial skills of the fish farm operators account largely to the production cost and profitability of the enterprise
Resumo:
In this thesis we uncover a new relation which links thermodynamics and information theory. We consider time as a channel and the detailed state of a physical system as a message. As the system evolves with time, ever present noise insures that the "message" is corrupted. Thermodynamic free energy measures the approach of the system toward equilibrium. Information theoretical mutual information measures the loss of memory of initial state. We regard the free energy and the mutual information as operators which map probability distributions over state space to real numbers. In the limit of long times, we show how the free energy operator and the mutual information operator asymptotically attain a very simple relationship to one another. This relationship is founded on the common appearance of entropy in the two operators and on an identity between internal energy and conditional entropy. The use of conditional entropy is what distinguishes our approach from previous efforts to relate thermodynamics and information theory.
Resumo:
The problem of the existence and stability of periodic solutions of infinite-lag integra-differential equations is considered. Specifically, the integrals involved are of the convolution type with the dependent variable being integrated over the range (- ∞,t), as occur in models of population growth. It is shown that Hopf bifurcation of periodic solutions from a steady state can occur, when a pair of eigenvalues crosses the imaginary axis. Also considered is the existence of traveling wave solutions of a model population equation allowing spatial diffusion in addition to the usual temporal variation. Lastly, the stability of the periodic solutions resulting from Hopf bifurcation is determined with aid of a Floquet theory.
The first chapter is devoted to linear integro-differential equations with constant coefficients utilizing the method of semi-groups of operators. The second chapter analyzes the Hopf bifurcation providing an existence theorem. Also, the two-timing perturbation procedure is applied to construct the periodic solutions. The third chapter uses two-timing to obtain traveling wave solutions of the diffusive model, as well as providing an existence theorem. The fourth chapter develops a Floquet theory for linear integro-differential equations with periodic coefficients again using the semi-group approach. The fifth chapter gives sufficient conditions for the stability or instability of a periodic solution in terms of the linearization of the equations. These results are then applied to the Hopf bifurcation problem and to a certain population equation modeling periodically fluctuating environments to deduce the stability of the corresponding periodic solutions.
Resumo:
In Part I, a method for finding solutions of certain diffusive dispersive nonlinear evolution equations is introduced. The method consists of a straightforward iteration procedure, applied to the equation as it stands (in most cases), which can be carried out to all terms, followed by a summation of the resulting infinite series, sometimes directly and other times in terms of traces of inverses of operators in an appropriate space.
We first illustrate our method with Burgers' and Thomas' equations, and show how it quickly leads to the Cole-Hopft transformation, which is known to linearize these equations.
We also apply this method to the Korteweg and de Vries, nonlinear (cubic) Schrödinger, Sine-Gordon, modified KdV and Boussinesq equations. In all these cases the multisoliton solutions are easily obtained and new expressions for some of them follow. More generally we show that the Marcenko integral equations, together with the inverse problem that originates them, follow naturally from our expressions.
Only solutions that are small in some sense (i.e., they tend to zero as the independent variable goes to ∞) are covered by our methods. However, by the study of the effect of writing the initial iterate u_1 = u_(1)(x,t) as a sum u_1 = ^∼/u_1 + ^≈/u_1 when we know the solution which results if u_1 = ^∼/u_1, we are led to expressions that describe the interaction of two arbitrary solutions, only one of which is small. This should not be confused with Backlund transformations and is more in the direction of performing the inverse scattering over an arbitrary “base” solution. Thus we are able to write expressions for the interaction of a cnoidal wave with a multisoliton in the case of the KdV equation; these expressions are somewhat different from the ones obtained by Wahlquist (1976). Similarly, we find multi-dark-pulse solutions and solutions describing the interaction of envelope-solitons with a uniform wave train in the case of the Schrodinger equation.
Other equations tractable by our method are presented. These include the following equations: Self-induced transparency, reduced Maxwell-Bloch, and a two-dimensional nonlinear Schrodinger. Higher order and matrix-valued equations with nonscalar dispersion functions are also presented.
In Part II, the second Painleve transcendent is treated in conjunction with the similarity solutions of the Korteweg-de Vries equat ion and the modified Korteweg-de Vries equation.
Resumo:
We present a novel account of the theory of commutative spectral triples and their two closest noncommutative generalisations, almost-commutative spectral triples and toric noncommutative manifolds, with a focus on reconstruction theorems, viz, abstract, functional-analytic characterisations of global-analytically defined classes of spectral triples. We begin by reinterpreting Connes's reconstruction theorem for commutative spectral triples as a complete noncommutative-geometric characterisation of Dirac-type operators on compact oriented Riemannian manifolds, and in the process clarify folklore concerning stability of properties of spectral triples under suitable perturbation of the Dirac operator. Next, we apply this reinterpretation of the commutative reconstruction theorem to obtain a reconstruction theorem for almost-commutative spectral triples. In particular, we propose a revised, manifestly global-analytic definition of almost-commutative spectral triple, and, as an application of this global-analytic perspective, obtain a general result relating the spectral action on the total space of a finite normal compact oriented Riemannian cover to that on the base space. Throughout, we discuss the relevant refinements of these definitions and results to the case of real commutative and almost-commutative spectral triples. Finally, we outline progess towards a reconstruction theorem for toric noncommutative manifolds.
Resumo:
With data centers being the supporting infrastructure for a wide range of IT services, their efficiency has become a big concern to operators, as well as to society, for both economic and environmental reasons. The goal of this thesis is to design energy-efficient algorithms that reduce energy cost while minimizing compromise to service. We focus on the algorithmic challenges at different levels of energy optimization across the data center stack. The algorithmic challenge at the device level is to improve the energy efficiency of a single computational device via techniques such as job scheduling and speed scaling. We analyze the common speed scaling algorithms in both the worst-case model and stochastic model to answer some fundamental issues in the design of speed scaling algorithms. The algorithmic challenge at the local data center level is to dynamically allocate resources (e.g., servers) and to dispatch the workload in a data center. We develop an online algorithm to make a data center more power-proportional by dynamically adapting the number of active servers. The algorithmic challenge at the global data center level is to dispatch the workload across multiple data centers, considering the geographical diversity of electricity price, availability of renewable energy, and network propagation delay. We propose algorithms to jointly optimize routing and provisioning in an online manner. Motivated by the above online decision problems, we move on to study a general class of online problem named "smoothed online convex optimization", which seeks to minimize the sum of a sequence of convex functions when "smooth" solutions are preferred. This model allows us to bridge different research communities and help us get a more fundamental understanding of general online decision problems.
Resumo:
This thesis describes simple extensions of the standard model with new sources of baryon number violation but no proton decay. The motivation for constructing such theories comes from the shortcomings of the standard model to explain the generation of baryon asymmetry in the universe, and from the absence of experimental evidence for proton decay. However, lack of any direct evidence for baryon number violation in general puts strong bounds on the naturalness of some of those models and favors theories with suppressed baryon number violation below the TeV scale. The initial part of the thesis concentrates on investigating models containing new scalars responsible for baryon number breaking. A model with new color sextet scalars is analyzed in more detail. Apart from generating cosmological baryon number, it gives nontrivial predictions for the neutron-antineutron oscillations, the electric dipole moment of the neutron, and neutral meson mixing. The second model discussed in the thesis contains a new scalar leptoquark. Although this model predicts mainly lepton flavor violation and a nonzero electric dipole moment of the electron, it includes, in its original form, baryon number violating nonrenormalizable dimension-five operators triggering proton decay. Imposing an appropriate discrete symmetry forbids such operators. Finally, a supersymmetric model with gauged baryon and lepton numbers is proposed. It provides a natural explanation for proton stability and predicts lepton number violating processes below the supersymmetry breaking scale, which can be tested at the Large Hadron Collider. The dark matter candidate in this model carries baryon number and can be searched for in direct detection experiments as well. The thesis is completed by constructing and briefly discussing a minimal extension of the standard model with gauged baryon, lepton, and flavor symmetries.
Resumo:
This thesis introduces new tools for geometric discretization in computer graphics and computational physics. Our work builds upon the duality between weighted triangulations and power diagrams to provide concise, yet expressive discretization of manifolds and differential operators. Our exposition begins with a review of the construction of power diagrams, followed by novel optimization procedures to fully control the local volume and spatial distribution of power cells. Based on this power diagram framework, we develop a new family of discrete differential operators, an effective stippling algorithm, as well as a new fluid solver for Lagrangian particles. We then turn our attention to applications in geometry processing. We show that orthogonal primal-dual meshes augment the notion of local metric in non-flat discrete surfaces. In particular, we introduce a reduced set of coordinates for the construction of orthogonal primal-dual structures of arbitrary topology, and provide alternative metric characterizations through convex optimizations. We finally leverage these novel theoretical contributions to generate well-centered primal-dual meshes, sphere packing on surfaces, and self-supporting triangulations.
Resumo:
Energy and sustainability have become one of the most critical issues of our generation. While the abundant potential of renewable energy such as solar and wind provides a real opportunity for sustainability, their intermittency and uncertainty present a daunting operating challenge. This thesis aims to develop analytical models, deployable algorithms, and real systems to enable efficient integration of renewable energy into complex distributed systems with limited information.
The first thrust of the thesis is to make IT systems more sustainable by facilitating the integration of renewable energy into these systems. IT represents the fastest growing sectors in energy usage and greenhouse gas pollution. Over the last decade there are dramatic improvements in the energy efficiency of IT systems, but the efficiency improvements do not necessarily lead to reduction in energy consumption because more servers are demanded. Further, little effort has been put in making IT more sustainable, and most of the improvements are from improved "engineering" rather than improved "algorithms". In contrast, my work focuses on developing algorithms with rigorous theoretical analysis that improve the sustainability of IT. In particular, this thesis seeks to exploit the flexibilities of cloud workloads both (i) in time by scheduling delay-tolerant workloads and (ii) in space by routing requests to geographically diverse data centers. These opportunities allow data centers to adaptively respond to renewable availability, varying cooling efficiency, and fluctuating energy prices, while still meeting performance requirements. The design of the enabling algorithms is however very challenging because of limited information, non-smooth objective functions and the need for distributed control. Novel distributed algorithms are developed with theoretically provable guarantees to enable the "follow the renewables" routing. Moving from theory to practice, I helped HP design and implement industry's first Net-zero Energy Data Center.
The second thrust of this thesis is to use IT systems to improve the sustainability and efficiency of our energy infrastructure through data center demand response. The main challenges as we integrate more renewable sources to the existing power grid come from the fluctuation and unpredictability of renewable generation. Although energy storage and reserves can potentially solve the issues, they are very costly. One promising alternative is to make the cloud data centers demand responsive. The potential of such an approach is huge.
To realize this potential, we need adaptive and distributed control of cloud data centers and new electricity market designs for distributed electricity resources. My work is progressing in both directions. In particular, I have designed online algorithms with theoretically guaranteed performance for data center operators to deal with uncertainties under popular demand response programs. Based on local control rules of customers, I have further designed new pricing schemes for demand response to align the interests of customers, utility companies, and the society to improve social welfare.
Resumo:
Close to equilibrium, a normal Bose or Fermi fluid can be described by an exact kinetic equation whose kernel is nonlocal in space and time. The general expression derived for the kernel is evaluated to second order in the interparticle potential. The result is a wavevector- and frequency-dependent generalization of the linear Uehling-Uhlenbeck kernel with the Born approximation cross section.
The theory is formulated in terms of second-quantized phase space operators whose equilibrium averages are the n-particle Wigner distribution functions. Convenient expressions for the commutators and anticommutators of the phase space operators are obtained. The two-particle equilibrium distribution function is analyzed in terms of momentum-dependent quantum generalizations of the classical pair distribution function h(k) and direct correlation function c(k). The kinetic equation is presented as the equation of motion of a two -particle correlation function, the phase space density-density anticommutator, and is derived by a formal closure of the quantum BBGKY hierarchy. An alternative derivation using a projection operator is also given. It is shown that the method used for approximating the kernel by a second order expansion preserves all the sum rules to the same order, and that the second-order kernel satisfies the appropriate positivity and symmetry conditions.
Resumo:
O presente estudo teve como objetivos avaliar se a aplicação de verniz fluoretado com periodicidade semestral em crianças pré-escolares reduz o número de crianças com lesões de cárie em dentina na dentição decídua, diminui a incidência de lesões de cárie em esmalte e dentina, está inversamente associado à ocorrência de dor e abscesso dentário e produz quaisquer efeitos adversos. A população de estudo consistiu de 200 crianças na faixa etária de 12 a 48 meses, recrutadas em uma unidade de saúde pública da cidade do Rio de Janeiro, as quais foram alocadas aleatoriamente nos grupos teste (verniz fluoretado Duraphat) e controle (verniz placebo). Para o registro da incidência de cárie, as crianças foram examinadas na linha de base e a cada seis meses, durante um ano, por dois odontopediatras previamente treinados e calibrados (Kappa=0,85). A ocorrência de dor, abscesso e efeitos adversos foi verificada a partir de entrevistas com os responsáveis. Os participantes, os seus responsáveis, os operadores e os examinadores desconheciam a qual grupo cada criança pertencia. No final do período de acompanhamento, 71 crianças do grupo teste e 77 do grupo controle foram avaliadas. Constatou-se que, nos grupos teste e controle, o número de crianças com novas lesões de cárie em dentina foi igual a 13 e 20 (teste Qui-quadrado, p=0,34) e que a média do incremento de cárie considerando apenas lesões em dentina (c3eos) foi de 1,1(dp=3,4) e de 1,4(dp=2,8), respectivamente (teste de Mann-Whitney, p=0,29). Uma criança apresentou dor de dente e abscesso dentário e outras duas crianças apresentaram apenas dor de dente. Todas pertenciam ao grupo teste. Com relação aos efeitos adversos, encontrou-se que uma criança pertencente ao grupo controle relatou ardência na cavidade bucal após a aplicação do placebo e que o responsável por um participante do grupo teste sentiu-se incomodado com a coloração amarelada dos dentes da criança após a aplicação do verniz fluoretado. Concluiu-se que a aplicação de verniz fluoretado com periodicidade semestral em crianças pré-escolares é segura e parece contribuir para o controle da progressão de cárie. Contudo, é necessário um período de acompanhamento mais longo para se obter evidência conclusiva a respeito da efetividade dessa intervenção. Não houve associação entre a ocorrência de dor e abscesso dentário e o uso profissional do verniz fluoretado.
Resumo:
A raspagem subgengival e o alisamento radicular constituem o "padrão ouro" e o tratamento de eleição para a periodontite; porém, é um procedimento difícil de ser executado, que requer um intenso treinamento e que pode expor a dentina, causando hipersensibilidade dentinária pela remoção excessiva de cemento, ou produzir defeitos, como sulcos e ranhuras, além de deixar cálculo residual e não conseguir atingir toda as superfície radicular. Recentemente, um gel a base de papaína e cloramina foi introduzido no mercado (Papacárie), utilizado no tratamento da remoção de dentina cariada. Este gel poderia auxiliar na remoção do cálculo subgengival com menor desgaste do cemento. O objetivo deste trabalho foi comparar a eficácia e analisar a superfície radicular na utilização de um gel à base de papaína e cloramina, associado ao alisamento radicular, na região subgengival. Após receberem instruções de higiene oral, raspagem supragengival e polimento coronário, 18 pacientes com periodontite crônica, 6 mulheres e 12 homens, com idade média de 51 anos (8) foram tratados num modelo de boca dividida. O tratamento-teste foi constituído pela aplicação do gel na área subgengival por 1 min., seguida pelo alisamento radicular; o tratamento-controle foi constituído pela raspagem subgengival e alisamento radiculares. A terapia foi executada por 3 operadoras e os exames inicial, de 28 dias e 3 meses, foram realizados por um único examinador. Quatro dentes nunca tratados de dois outros pacientes (2 incisivos centrais inferiores e 2 premolares), com indicação para extração, foram submetidos ao tratamento teste e controle e, após a exodontia, analisados em microscopia eletrônica de varredura (MEV). Ao longo dos 3 meses, os resultados demonstraram significativa melhora nos parâmetros clínicos: sangramento à sondagem, profundidade de bolsa e ganho de inserção, tanto no lado-teste, como no lado-controle, principalmente aos 28 dias; mas não foi observada significância estatística quando ambas as formas de terapia foram comparadas. O índice de placa médio permaneceu alto ao longo do estudo. A análise do MEV demonstrou que o tratamento-teste deixou uma maior quantidade de cálculo residual sobre a superfície radicular; porém, áreas livres de cálculo também foram observadas. No tratamento-controle, verificaram-se regiões mais profundas não atingidas pelas curetas, áreas livres de cálculo e um sulco produzido pela cureta. Concluiu-se que tanto o tratamento-teste, como o controle, foram eficazes no tratamento da periodontite crônica nos 3 meses observados.
Resumo:
A noncommutative 2-torus is one of the main toy models of noncommutative geometry, and a noncommutative n-torus is a straightforward generalization of it. In 1980, Pimsner and Voiculescu in [17] described a 6-term exact sequence, which allows for the computation of the K-theory of noncommutative tori. It follows that both even and odd K-groups of n-dimensional noncommutative tori are free abelian groups on 2n-1 generators. In 1981, the Powers-Rieffel projector was described [19], which, together with the class of identity, generates the even K-theory of noncommutative 2-tori. In 1984, Elliott [10] computed trace and Chern character on these K-groups. According to Rieffel [20], the odd K-theory of a noncommutative n-torus coincides with the group of connected components of the elements of the algebra. In particular, generators of K-theory can be chosen to be invertible elements of the algebra. In Chapter 1, we derive an explicit formula for the First nontrivial generator of the odd K-theory of noncommutative tori. This gives the full set of generators for the odd K-theory of noncommutative 3-tori and 4-tori.
In Chapter 2, we apply the graded-commutative framework of differential geometry to the polynomial subalgebra of the noncommutative torus algebra. We use the framework of differential geometry described in [27], [14], [25], [26]. In order to apply this framework to noncommutative torus, the notion of the graded-commutative algebra has to be generalized: the "signs" should be allowed to take values in U(1), rather than just {-1,1}. Such generalization is well-known (see, e.g., [8] in the context of linear algebra). We reformulate relevant results of [27], [14], [25], [26] using this extended notion of sign. We show how this framework can be used to construct differential operators, differential forms, and jet spaces on noncommutative tori. Then, we compare the constructed differential forms to the ones, obtained from the spectral triple of the noncommutative torus. Sections 2.1-2.3 recall the basic notions from [27], [14], [25], [26], with the required change of the notion of "sign". In Section 2.4, we apply these notions to the polynomial subalgebra of the noncommutative torus algebra. This polynomial subalgebra is similar to a free graded-commutative algebra. We show that, when restricted to the polynomial subalgebra, Connes construction of differential forms gives the same answer as the one obtained from the graded-commutative differential geometry. One may try to extend these notions to the smooth noncommutative torus algebra, but this was not done in this work.
A reconstruction of the Beilinson-Bloch regulator (for curves) via Fredholm modules was given by Eugene Ha in [12]. However, the proof in [12] contains a critical gap; in Chapter 3, we close this gap. More specifically, we do this by obtaining some technical results, and by proving Property 4 of Section 3.7 (see Theorem 3.9.4), which implies that such reformulation is, indeed, possible. The main motivation for this reformulation is the longer-term goal of finding possible analogs of the second K-group (in the context of algebraic geometry and K-theory of rings) and of the regulators for noncommutative spaces. This work should be seen as a necessary preliminary step for that purpose.
For the convenience of the reader, we also give a short description of the results from [12], as well as some background material on central extensions and Connes-Karoubi character.
Resumo:
The object of this investigation is to devise a rapid, fairly accurate, colorimetric analysis for HCN to be used in field work for determining instantaneous concentrations of the gas under fumigating canvas. A large amount of money is expended yearly by the citrus industry of this state in attempting to control and to eradicate the scale pests. Although fumigation with HCN has been practiced tor many years, the progress made has been anything but satisfactory. The greater portion of the work has always been carried on by contractors, who in a large number of cases have been very unscrupulous. The materials and labor are very expensive and the growers have been satisfied to adhere to beaten paths and hope for the best results on scale kill with the least attendant foliage injury. One familiar with fumigating, either from the grower's or the operator's viewpoint, knows that very widely varying results are obtained, even under what are apparently identical condition. Even after discounting for the dishonesty of some operators and the prejudices of the grower, there is still a large variance between desired or expected results and those actually obtained.
Resumo:
Fuzzy sets in the subject space are transformed to fuzzy solid sets in an increased object space on the basis of the development of the local umbra concept. Further, a counting transform is defined for reconstructing the fuzzy sets from the fuzzy solid sets, and the dilation and erosion operators in mathematical morphology are redefined in the fuzzy solid-set space. The algebraic structures of fuzzy solid sets can lead not only to fuzzy logic but also to arithmetic operations. Thus a fuzzy solid-set image algebra of two image transforms and five set operators is defined that can formulate binary and gray-scale morphological image-processing functions consisting of dilation, erosion, intersection, union, complement, addition, subtraction, and reflection in a unified form. A cellular set-logic array architecture is suggested for executing this image algebra. The optical implementation of the architecture, based on area coding of gray-scale values, is demonstrated. (C) 1995 Optical Society of America