973 resultados para protein tyrosine kinase


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The receptor tyrosine kinase Tie2, and its activating ligand Angiopoietin-1 (Ang1), are required for vascular remodelling and vessel integrity, whereas Ang2 may counteract these functions. However, it is not known how Tie2 transduces these different signals. Here, we show that Ang1 induces unique Tie2 complexes in mobile and confluent endothelial cells. Matrix-bound Ang1 induced cell adhesion, motility and Tie2 activation in cell-matrix contacts that became translocated to the trailing edge in migrating endothelial cells. In contrast, in contacting cells Ang1 induced Tie2 translocation to cell-cell contacts and the formation of homotypic Tie2-Tie2 trans-associated complexes that included the vascular endothelial phosphotyrosine phosphatase, leading to inhibition of paracellular permeability. Distinct signalling proteins were preferentially activated by Tie2 in the cell-matrix and cell-cell contacts, where Ang2 inhibited Ang1-induced Tie2 activation. This novel type of cellular microenvironment-dependent receptor tyrosine kinase activation may explain some of the effects of angiopoietins in angiogenesis and vessel stabilization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trastuzumab, a monoclonal antibody that blocks HER-2 receptor, improves the survival of women with HER-2-positive early and advanced breast cancer when given with chemotherapy. Lapatinib, a dual tyrosine kinase inhibitor of EGFR and HER-2, is approved for the treatment of metastatic breast cancer patients after failure of prior anthracycline, taxanes and trastuzumab therapies in combination with capecitabine. Importantly, cardiac toxicity, manifested as symptomatic congestive heart failure or asymptomatic left ventricular ejection fraction decline, has been reported in some of the patients receiving these novel anti-HER-2 therapies, particularly when these drugs are used following anthracyclines, whose cardiotoxic potential has been recognized for decades. This review will focus on the incidence, natural history, underlying mechanisms, management, and areas of uncertainty regarding trastuzumab-and lapatinib-induced cardiotoxicity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fgfrl1 is a novel member of the fibroblast growth factor receptor family. Its extracellular domain resembles the four conventional Fgfrs, while its intracellular domain lacks the tyrosine kinase domain necessary for Fgf mediated signal transduction. During embryonic development Fgfrl1 is expressed in the musculoskeletal system, in the lung, the pancreas and the metanephric kidney. Targeted disruption of the Fgfrl1 gene leads to the perinatal death of the mice due to a hypoplastic diaphragm, which is unable to inflate the lungs. Here we show that Fgfrl1-/- embryos also fail to develop the metanephric kidney. While the rest of the urogenital system, including bladder, ureter and sexual organs, develops normally, a dramatic reduction of ureteric branching morphogenesis and a lack of mesenchymal-to-epithelial transition in the nephrogenic mesenchyme result in severe renal dysgenesis. The failure of nephron induction might be explained by the absence of the tubulogenic markers Wnt4, Fgf8, Pax8 and Lim1 at E12.5 of the mutant animals. We also observed a loss of Pax2 positive nephron precursor cells and an increase of apoptosis in the cortical zone of the remnant kidney. Fgfrl1 is therefore essential for mesenchymal differentiation in the early steps of nephrogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

FGFRL1 is a novel FGF receptor that lacks the intracellular tyrosine kinase domain. While mammals, including man and mouse, possess a single copy of the FGFRL1 gene, fish have at least two copies, fgfrl1a and fgfrl1b. In zebrafish, both genes are located on chromosome 14, separated by about 10 cM. The two genes show a similar expression pattern in several zebrafish tissues, although the expression of fgfrl1b appears to be weaker than that of fgfrl1a. A clear difference is observed in the ovary of Fugu rubripes, which expresses fgfrl1a but not fgfrl1b. It is therefore possible that subfunctionalization has played a role in maintaining the two fgfrl1 genes during the evolution of fish. In human beings, the FGFRL1 gene is located on chromosome 4, adjacent to the SPON2, CTBP1 and MEAEA genes. These genes are also found adjacent to the fgfrl1a gene of Fugu, suggesting that FGFRL1, SPON2, CTBP1 and MEAEA were preserved as a coherent block during the evolution of Fugu and man.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vascular endothelial protein tyrosine phosphatase (VE-PTP) is an endothelial-specific receptor-type tyrosine phosphatase that associates with Tie-2 and VE-cadherin. VE-PTP gene disruption leads to embryonic lethality, vascular remodeling defects, and enlargement of vascular structures in extraembryonic tissues. We show here that antibodies against the extracellular part of VE-PTP mimic the effects of VE-PTP gene disruption exemplified by vessel enlargement in allantois explants. These effects require the presence of the angiopoietin receptor Tie-2. Analyzing the mechanism we found that anti-VE-PTP antibodies trigger endocytosis and selectively affect Tie-2-associated, but not VE-cadherin-associated VE-PTP. Dissociation of VE-PTP triggers the activation of Tie-2, leading to enhanced endothelial cell proliferation and enlargement of vascular structures through activation of Erk1/2. Importantly, the antibody effect on vessel enlargement is also observed in newborn mice. We conclude that VE-PTP is required to balance Tie-2 activity and endothelial cell proliferation, thereby controlling blood vessel development and vessel size.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The receptor tyrosine kinase MET is a prime target in clinical oncology due to its aberrant activation and involvement in the pathogenesis of a broad spectrum of malignancies. Similar to other targeted kinases, primary and secondary mutations seem to represent an important resistance mechanism to MET inhibitors. Here, we report the biologic activity of a novel MET inhibitor, EMD1214063, on cells that ectopically express the mutated MET variants M1268T, Y1248H, H1112Y, L1213V, H1112L, V1110I, V1206L, and V1238I. Our results demonstrate a dose-dependent decrease in MET autophosphorylation in response to EMD1214063 in five out of the eight cell lines (IC50 2-43nM). Blockade of MET by EMD1214063 was accompanied by a reduced activation of downstream effectors in cells expressing EMD1214063-sensitive mutants. In all sensitive mutant-expressing lines, EMD1214063 altered cell cycle distribution, primarily with an increase in G1 phase. EMD1214063 strongly influenced MET-driven biological functions, such as cellular morphology, MET-dependent cell motility and anchorage-independent growth. To assess the in vivo efficacy of EMD1214063, we used a xenograft tumor model in immunocompromised mice bearing NIH3T3 cells expressing sensitive and resistant MET mutated variants. Animals were randomized for the treatment with EMD1214063 (50mg/kg/day) or vehicle only. Remarkably, five days of EMD1214063 treatment resulted in a complete regression of the sensitive H1112L-derived tumors, while tumor growth remained unaffected in mice with L1213V tumors and in vehicle-treated animals. Collectively, the current data identifies EMD1214063 as a potent MET small molecule inhibitor with selective activity towards mutated MET variants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MET, also known as hepatocyte growth factor receptor (HGFR), is a receptor tyrosine kinase with an important role, both in normal cellular function as well as in oncogenesis. In many cancer types, abnormal activation of MET is related to poor prognosis and various strategies to inhibit its function, including small molecule inhibitors, are currently in preclinical and clinical evaluation. Autophagy, a self-digesting recycling mechanism with cytoprotective functions, is induced by cellular stress. This process is also induced upon cytotoxic drug treatment of cancer cells and partially allows these cells to escape cell death. Thus, since autophagy protects different tumor cells from chemotherapy-induced cell death, current clinical trials aim at combining autophagy inhibitors with different cancer treatments. We found that in a gastric adenocarcinoma cell line GTL-16, where MET activity is deregulated due to receptor overexpression, two different MET inhibitors PHA665752 and EMD1214063 lead to cell death paralleled by the induction of autophagy. A combined treatment of MET inhibitors together with the autophagy inhibitor 3-MA or genetically impairing autophagy by knocking down the key autophagy gene ATG7 further decreased cell viability of gastric cancer cells. In general, we observed the induction of cytoprotective autophagy in MET expressing cells upon MET inhibition and a combination of MET and autophagy inhibition resulted in significantly decreased cell viability in gastric cancer cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to "malignant" DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Signaling through epidermal growth factor receptor (EGFR/ErbB) family members plays a very important role in regulating proliferation, development, and malignant transformation of mammary epithelial cells. ErbB family members are often over-expressed in human breast carcinomas. Lapatinib is an ErbB1 and ErbB2 tyrosine kinase inhibitor that has been shown to have anti-proliferative effects in breast and lung cancer cells. Cells treated with Lapatinib undergo G1 phase arrest, followed by apoptosis. Lapatinib has been approved for clinical use, though patients have developed resistance to the drug, as seen previously with other EGFR inhibitors. Moreover, the therapeutic efficacy varies significantly within the patient population, and the mechanism of drug sensitivity is not fully understood. Expression levels of ErbB2 are used as a prognostic marker for Lapatinib response; however, even among breast tumor cell lines that express similar levels of ErbB2 there is marked difference in their proliferative responses to Lapatinib. To understand the mechanisms of acquired resistance, we established a cell line SkBr3-R that is resistant to Lapatinib, from a Lapatinib-sensitive breast tumor cell line, SkBr3. We have characterized the cell lines and demonstrated that Lapatinib resistance in our system is not facilitated by receptor-level activity or by previously known mutations in the ErbB receptors. Significant changes were observed in cell proliferation, cell migration, cell cycle and cell death between the Lapatinib resistant SkBr3-R and sensitive SkBr3 cell lines. Recent studies have suggested STAT3 is upregulated in Lapatinib resistant tumors in association with ErbB signaling. We investigated the role that STAT3 may play in Lapatinib resistance and discovered higher STAT3 activity in these resistant cells. In addition, transcriptional profiling indicated higher expression of STAT3 target genes, as well as of other genes that promote survival. The gene array data also revealed cell cycle regulators and cell adhesion/junction component genes as possible mediator of Lapatinib resistance. Altogether, this study has identified several possible mechanisms of Lapatinib resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND No effective standard treatment exists for patients with radioiodine-refractory, advanced differentiated thyroid carcinoma. We aimed to assess efficacy and safety of vandetanib, a tyrosine kinase inhibitor of RET, VEGFR and EGFR signalling, in this setting. METHODS In this randomised, double-blind, phase 2 trial, we enrolled adults (aged ≥18 years) with locally advanced or metastatic differentiated thyroid carcinoma (papillary, follicular, or poorly differentiated) at 16 European medical centres. Eligible patients were sequentially randomised in a 1:1 ratio with a standard computerised scheme to receive either vandetanib 300 mg per day (vandetanib group) or matched placebo (placebo group), balanced by centre. The primary endpoint was progression-free survival (PFS) in the intention-to-treat population based on investigator assessment. This study is registered with ClinicalTrials.gov, number NCT00537095. FINDINGS Between Sept 28, 2007, and Oct 16, 2008, we randomly allocated 72 patients to the vandetanib group and 73 patients to the placebo group. By data cutoff (Dec 2, 2009), 113 (78%) patients had progressed (52 [72%] patients in the vandetanib group and 61 [84%] in the placebo group) and 40 (28%) had died (19 [26%] patients in the vandetanib group and 21 [29%] in the placebo group). Patients who received vandetanib had longer PFS than did those who received placebo (hazard ratio [HR] 0·63, 60% CI 0·54-0·74; one-sided p=0·008): median PFS was 11·1 months (95% CI 7·7-14·0) for patients in the vandetanib group and 5·9 months (4·0-8·9) for patients in the placebo group. The most common grade 3 or worse adverse events were QTc prolongation (ten [14%] of 73 patients in the vandetanib group vs none in the placebo group), diarrhoea (seven [10%] vs none), asthenia (five [7%] vs three [4%]), and fatigue (four [5%] vs none). Two patients in the vandetanib group and one in the placebo group died from treatment-related serious adverse events (haemorrhage from skin metastases and pneumonia in the vandetanib group and pneumonia in the placebo group). INTERPRETATION Vandetanib is the first targeted drug to show evidence of efficacy in a randomised phase 2 trial in patients with locally advanced or metastatic differentiated thyroid carcinoma. Further investigation of tyrosine-kinase inhibitors in this setting is warranted. FUNDING AstraZeneca.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

EphA2, also known as ECK (epithelial cell kinase), is a transmembrane receptor tyrosine kinase that is commonly over-expressed in cancers such as those of the prostate, colon, lung, and breast. For breast cancers, EphA2 overexpression is most prominent in the ER-negative subtype, and is associated with a higher rate of lung metastasis. Studies conducted to demonstrate the role of EphA2 in a non-cancerous environment have shown that it is very important in developmental processes, but not in normal adult tissues. These results make EphA2 a prospective therapeutic target since new therapies are needed for the more aggressive ER-negative breast cancers. A panel of breast cancer cell lines was screened for expression of EphA2 by immunoblotting. Several of the overexpressing cell lines, including BT549, MDA-MB-231, and HCC 1954 were selected for experiments utilizing siRNA for transient knockdown and shRNA for stable knockdown. Targeted knockdown of EphA2 was measured using RT-PCR and immunoblotting techniques. Here, the functions of EphA2 in the process of metastasis have been elucidated using in vitro assays that indicate cancer cell metastatic potential and in vivo studies that reveal the effect of EphA2 on mammary fat pad tumor growth, vessel formation, and the effect of using EphA2-targeting siRNA on pre-established mammary fat pad tumors. A decrease in EphA2 expression both in vitro and in vivo correlated with reduced migration and experimental metastasis of breast cancer cells. Current work is being done to investigate the mechanism behind EphA2’s participation in some of these processes. These studies are important because they have contributed to understanding the role that EphA2 plays in the progression of breast cancers to a metastatic state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Preeclampsia (PE), a syndrome affecting 5% of pregnancies, characterized by hypertension and proteinuria, is a leading cause of maternal and fetal morbidity and mortality. The condition is often accompanied by the presence of a circulating maternal autoantibody, the angiotensin II type I receptor agonistic autoantibody (AT(1)-AA). However, the prevalence of AT(1)-AA in PE remains unknown, and the correlation of AT(1)-AA titers with the severity of the disease remains undetermined. We used a sensitive and high-throughput luciferase bioassay to detect AT(1)-AA levels in the serum of 30 normal, 37 preeclamptic (10 mild and 27 severe), and 23 gestational hypertensive individuals. Here we report that AT(1)-AA is highly prevalent in PE ( approximately 95%). Next, by comparing the levels of AT(1)-AA among women with mild and severe PE, we found that the titer of AT(1)-AA is proportional to the severity of the disease. Intriguingly, among severe preeclamptic patients, we discovered that the titer of AT(1)-AA is significantly correlated with the clinical features of PE: systolic blood pressure (r=0.56), proteinuria (r=0.70), and soluble fms-like tyrosine kinase-1 level (r=0.71), respectively. Notably, only AT(1)-AA, and not soluble fms-like tyrosine kinase-1, levels are elevated in gestational hypertensive patients. These data serve as compelling clinical evidence that AT(1)-AA is highly prevalent in PE, and its titer is strongly correlated to the severity of the disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A gain-of-function R620W polymorphism in the PTPN22 gene, encoding the lymphoid tyrosine phosphatase LYP, has recently emerged as an important risk factor for human autoimmunity. Here we report that another missense substitution (R263Q) within the catalytic domain of LYP leads to reduced phosphatase activity. High-resolution structural analysis revealed the molecular basis for this loss of function. Furthermore, the Q263 variant conferred protection against human systemic lupus erythematosus, reinforcing the proposal that inhibition of LYP activity could be beneficial in human autoimmunity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trophism as a "clonal dominance" support mechanism for tumor cells is an unexplored area of tumor progression. This report presents evidence that the human melanoma low-affinity neurotrophin receptor (p75) can signal independently of its high-affinity tyrosine kinase counterparts, the TRK family of kinases. Signaling may be accomplished by a p75-associated purine-analog-sensitive kinase and results in enhanced invasion into a reconstituted basement membrane with a corresponding stimulation of matrix metalloproteinase-2 expression. Additionally, a "stress culture" survival assay was developed to mimic the growth limiting conditions encountered by melanoma cells in a rapidly growing primary tumor or metastatic deposit prior to neoangiogenesis. Under these conditions, p75, promotes the survival of high p75 expressing brain-colonizing melanoma cells. Extensive 70W melanoma cell-cell contact, which downregulates p75, immediately precedes the induction of cell death associated with diminished production of two key cell survival factors, bcl-2 and the p85 subunit of phosphoinositol-3-kinase, and an elevation in apoptosis promoting intracellular reactive oxygen species (ROSs). Since one function of bcl-2 may be to control the generation of ROSs via the antioxidant pathway, these cells may receive a apoptosis-prompting "double hit". 70W melanoma cell death occurred by an apoptotic mechanism displaying classical morphological changes including plasma membrane blebbing, loss of microvilli and redistribution of ribosomes. 70W apoptosis could be pharmacologically triggered following anti-p75 monoclonal antibody-mediated clustering of p75 receptors. 70W cells fluorescently sorted for high-p75 expression (p75$\sp{\rm H}$ cells) exhibited an augmented survival potential and a predilection to sort with the S + G2/M growth phase, relative to their low p75 expressing, p75$\sp{\rm L}$ counterparts. Apoptosis is significantly delayed by p75$\sp{\rm H}$ cells, whereas p75$\sp{\rm L}$ cells are exquisitely prone to initiate apoptosis. Importantly, the p75$\sp{\rm L}$ cells that survive apoptosis, highly re-expressed p75 and were remarkably responsive to exogenous NGF.^ These are the first data to implicate p75-mediated neurotrophism as an invasion and survival support mechanism employed by brain-metastatic cells. In particular, these results may have implications in little understood phenomena of tumor progression, such as the emergence of "clonal dominance" and tumor dormancy. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well established that the chimeric Bcr-Abl oncoprotein resulting from fusing 3$\sp\prime$ ABL sequences on chromosome 9 to 5$\sp\prime$ BCR sequences on chromosome 22 is the primary cause of Philadelphia chromosome-positive (Ph$\sp1$) leukemias. Although it is clear that the cis-Bcr sequence present within Bcr-Abl is able to activate the tyrosine kinase activity and F-actin binding capacity of Bcr-Abl which is critical for the transforming ability of BCR-ABL, the biological role of normal BCR gene product (P160 BCR) remains largely unknown. The previous finding by our lab that P160 BCR forms stable complexes with Bcr-Abl oncoprotein in Ph$\sp1$-positive leukemic cells implicated P160 BCR in the pathogenesis of Ph$\sp1$-positive leukemias. Here, we demonstrated that P160 BCR physically interacts with P210 BCR-ABL and become tyrosine phosphorylated when co-expressed with P210 BCR-ABL in COS1 cells while no tyrosine phosphorylation of P160 BCR can be detected when it is expressed alone. The results suggest that P160 BCR is a target for the Bcr-Abl tyrosine kinase. Although we were unable to detect stable physical interaction between P160 BCR and P145 c-ABL (Ib) in COS1 cells overexpressing both proteins, P160 BCR was phosphorylated on tyrosine residues when co-expressed with activated tyrosine kinase of P145 c-ABL (Ib). In addition, studies of tyrosine phosphorylation of BCR deletion mutants and 2-dimensional tryptic mapping of in vitro phosphorylated wild type and mutant (tyrosine to phenylalanine) Bcr-Abl indicated that tyrosine 177, 283 and 360 of Bcr represent some of the phosphorylation sites. Even though the significance of tyrosine phosphorylation of residues 283 and 360 of Bcr has not been determined, tyrosine phosphorylation of residue 177 within Bcr-Abl has been reported to be critical for its interaction with Grb2 molecule and subsequent activation of Ras signaling pathway. Here, we further demonstrated that tyrosine 177 phosphorylated P160 BCR is also able to bind to Grb2 molecule suggesting the role of P160 BCR in the Ras signaling pathway.^ Surprisingly, using 3$\sp\prime$ BCR antisense oligonucleotide to reduce the expression of P160 BCR without interfering with the expression of BCR-ABL resulted in increased growth or survival of B15 cells and M3.16 cells expressing either P185 BCR-ABL or P210 BCR-ABL respectively. The results provided strong arguments that P160 BCR may function as a negative regulator for cell growth.^ Considering all these results, we hypothesize that P160 BCR negatively regulate cell growth and tyrosine phosphorylation of P160 BCR turns off its growth suppressor function and turns on its growth stimulatory function. We further speculate that Bcr-Abl oncoprotein in leukemia cells stably interacts with and constitutively phosphorylates portions of P160 BCR converting it into a growth stimulatory state. In normal cells, the growth suppressor effects of P160 BCR could only be transiently and conditionally switched to growth stimulatory action by a strictly regulated cellular tyrosine kinase such as c-ABL. The model will be further discussed in the text. ^