965 resultados para protein kinase B (PKB)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The nucleoside intermediate 5'-aminoimidazole-4-carboxyamide-ribonucleoside (AICAR) activates skeletal muscle AMP-activated protein kinase (AMPK) and increases glucose uptake. The AMPK phosphorylates neuronal nitric oxide synthase (nNOS)µ in skeletal muscle fibres. There is evidence that both AMPK and nNOSµ may be involved in the regulation of contraction-stimulated glucose uptake.<br />2. We examined whether both AICAR- and contraction-stimulated glucose uptake were mediated by NOS in rat skeletal muscle.<br />3. Rat isolated epitrochlearis muscles were subjected in vitro to electrically stimulated contractions for 10 min and/or incubated in the presence or absence of AICAR (2 mmol/L) or the NOS inhibitor NG-monomethyl-l-arginine (l-NMMA; 100 µmol/L).<br />4. Muscle contraction significantly (P < 0.05) altered the metabolic profile of the muscle. In contrast, AICAR and l-NMMA had no effect on the metabolic profile of the muscle, except that AICAR increased muscle 5'-aminoimidazole-4-carboxyamide-ribonucleotide (ZMP) and AICAR content. Nitric oxide synthase inhibition caused a small but significant (P < 0.05) reduction in basal 3-O-methylglucose transport, which was observed in all treatments. 5'-Aminoimidazole-4-carboxyamide-ribonucleoside significantly increased (P < 0.05) glucose transport above basal, with NOS inhibition decreasing this slightly (increased by 209% above basal compared with 184% above basal with NOS inhibition). Contraction significantly increased glucose transport above basal, with NOS inhibition substantially reducing this (107% increase vs 31% increase). 5'-Aminoimidazole-4-carboxyamide-ribonucleoside plus contraction in combination were not additive on glucose transport.<br />5. These results suggest that NO plays a role in basal glucose uptake and may regulate contraction-stimulated glucose uptake. However, NOS/nitric oxide do not appear to be signalling intermediates in AICAR-stimulated skeletal muscle glucose uptake.<br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abscisic acid (ABA)-mediated gene expression is a critical component of plant responses to this important hormone, which affects plant growth, development, and responses to environmental stresses. Plant responses to ABA are mediated by a number of factors including PKABA1, an ABA induced protein kinase involved in ABA-suppressed gene expression in cereal grains, and TaWD40, which has previously been shown to physically interact with PKABA1. A full-length 1.9 kb TaWD40 cDNA, CK210682, was sequenced as part of this project. Based on the deduced protein sequence, it is thought that TaWD40 may belong to the family of E3 ubiquitin ligases, possibly targeting PKABA1 for destruction. Construction of expression plasmids for overproduction of the TaWD40 polypeptide in E. coli is currently underway. The TaWD40 cDNA has been successfully amplified from the source plasmid and inserted into an intermediate plasmid, pCR2.1. The TaWD40 cDNA is currently being cloned from the pCR2.1 intermediate plasmid into two different expression vectors, pRSET-A and pMAL-c2x, for future protein production and purification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Creatine monohydrate (CrM) supplementation has been shown to increase fat-free mass and muscle power output possibly via cell swelling. Little is known about the cellular response to CrM. We investigated the effect of short-term CrM supplementation on global and targeted mRNA expression and protein content in human skeletal muscle. In a randomized, placebo-controlled, crossover, double-blind design, 12 young, healthy, nonobese men were supplemented with either a placebo (PL) or CrM (loading phase, 20 g/day x 3 days; maintenance phase, 5 g/day x 7 days) for 10 days. Following a 28-day washout period, subjects were put on the alternate supplementation for 10 days. Muscle biopsies of the vastus lateralis were obtained and were assessed for mRNA expression (cDNA microarrays + real-time PCR) and protein content (Kinetworks KPKS 1.0 Protein Kinase screen). CrM supplementation significantly increased fat-free mass, total body water, and body weight of the participants (P < 0.05). Also, CrM supplementation significantly upregulated (1.3- to 5.0-fold) the mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodeling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival. We are the first to report this large-scale gene expression in the skeletal muscle with short-term CrM supplementation, a response that suggests changes in cellular osmolarity.<br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compared in human skeletal muscle the effect of absolute vs. relative exercise intensity on AMP-activated protein kinase (AMPK) signaling and substrate metabolism under normoxic and hypoxic conditions. Eight untrained males cycled for 30 min under hypoxic conditions (11.5% O2, 111 ± 12 W, 72 ± 3% hypoxia VO2 peak; 72% Hypoxia) or under normoxic conditions (20.9% O2) matched to the same absolute (111 ± 12 W, 51 ± 1% normoxia VO2 peak; 51% Normoxia) or relative (to VO2 peak) intensity (171 ± 18 W, 73 ± 1% normoxia VO2 peak; 73% Normoxia). Increases (P < 0.05) in AMPK activity, AMPK{alpha} Thr172 phosphorylation, ACCbeta Ser221 phosphorylation, free AMP content, and glucose clearance were more influenced by the absolute than by the relative exercise intensity, being greatest in 73% Normoxia with no difference between 51% Normoxia and 72% Hypoxia. In contrast to this, increases in muscle glycogen use, muscle lactate content, and plasma catecholamine concentration were more influenced by the relative than by the absolute exercise intensity, being similar in 72% Hypoxia and 73% Normoxia, with both trials higher than in 51% Normoxia. In conclusion, increases in muscle AMPK signaling, free AMP content, and glucose disposal during exercise are largely determined by the absolute exercise intensity, whereas increases in plasma catecholamine levels, muscle glycogen use, and muscle lactate levels are more closely associated with the relative exercise intensity.<br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From a cell signaling perspective, short-duration intense muscular&nbsp;work is typically associated with resistance training and linked&nbsp;to pathways that stimulate growth. However, brief repeated sessions&nbsp;of sprint or high-intensity interval exercise induce rapid phenotypic&nbsp;changes that resemble traditional endurance training. We tested&nbsp;the hypothesis that an acute session of intense intermittent&nbsp;cycle exercise would activate signaling cascades linked to mitochondrialbiogenesis in human skeletal muscle. Biopsies (vastus lateralis)&nbsp;were obtained from six young men who performed four 30-s "all&nbsp;out" exercise bouts interspersed with 4 min of rest (<80&nbsp;kJ total work). Phosphorylation of AMP-activated protein kinase&nbsp;(AMPK; subunits&nbsp;border="0" src="http://jap.physiology.org.ezproxy-m.deakin.edu.au/math/agr.gif" alt="{alpha}" />1 and&nbsp;border="0" src="http://jap.physiology.org.ezproxy-m.deakin.edu.au/math/agr.gif" alt="{alpha}" />2) and the p38 mitogen-activated protein&nbsp;kinase (MAPK) was higher (P&nbsp;border="0" src="http://jap.physiology.org.ezproxy-m.deakin.edu.au/math/le.gif" alt="≤" />&nbsp;0.05) immediately after&nbsp;bout 4&nbsp;vs. preexercise. Peroxisome proliferator-activated receptor-border="0" src="http://jap.physiology.org.ezproxy-m.deakin.edu.au/math/ggr.gif" alt="{gamma}" />&nbsp;coactivator-1border="0" src="http://jap.physiology.org.ezproxy-m.deakin.edu.au/math/agr.gif" alt="{alpha}" />(PGC-1border="0" src="http://jap.physiology.org.ezproxy-m.deakin.edu.au/math/agr.gif" alt="{alpha}" />) mRNA was increased approximately twofold&nbsp;above rest after 3 h of recovery (P&nbsp;border="0" src="http://jap.physiology.org.ezproxy-m.deakin.edu.au/math/le.gif" alt="≤" />&nbsp;0.05); however, PGC-1border="0" src="http://jap.physiology.org.ezproxy-m.deakin.edu.au/math/agr.gif" alt="{alpha}" />protein&nbsp;content was unchanged. In contrast, phosphorylation of protein&nbsp;kinase B/Akt (Thr308&nbsp;and Ser473) tended to decrease, and downstream&nbsp;targets linked to hypertrophy (p70 ribosomal S6 kinase and 4E&nbsp;binding protein 1) were unchanged after exercise and recovery.&nbsp;We conclude that signaling through AMPK and p38 MAPK to PGC-1border="0" src="http://jap.physiology.org.ezproxy-m.deakin.edu.au/math/agr.gif" alt="{alpha}" />&nbsp;may explain in part the metabolic remodeling induced by low-volume&nbsp;intense interval exercise, including mitochondrial biogenesis&nbsp;and an increased capacity for glucose and fatty acid oxidation.<br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<b>1.b>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Skeletal muscle is a highly plastic tissue that has a remarkable ability to adapt to external demands, such as exercise. Many of these adaptations can be explained by changes in skeletal muscle gene expression. A single bout of exercise is sufficient to induce the expression of some metabolic genes. We have focused our attention on the regulation of glucose transporter isoform 4 (GLUT-4) expression in human skeletal muscle.<br /><br /><b>2.b>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Glucose transporter isoform 4 gene expression is increased immediately following a single bout of exercise, and the GLUT-4 enhancer factor (GEF) and myocyte enhancer factor 2 (MEF2) transcription factors are required for this response. Glucose transporter isoform enhancer factor and MEF2 DNA binding activities are increased following exercise, and the molecular mechanisms regulating MEF2 in exercising human skeletal muscle have also been examined.<br /><br /><b>3.b>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; These studies find possible roles for histone deacetylase 5 (HDAC5), adenosine monophosphate–activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) and p38 mitogen-activated protein kinase (MAPK) in regulating MEF2 through a series of complex interactions potentially involving MEF2 repression, coactivation and phosphorylation.<br /><br /><b>4.b>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Given that MEF2 is a transcription factor required for many exercise responsive genes, it is possible that these mechanisms are responsible for regulating the expression of a variety of metabolic genes during exercise. These mechanisms could also provide targets for the treatment and management of metabolic disease states, such as obesity and type 2 diabetes, which are characterized by mitochondrial dysfunction and insulin resistance in skeletal muscle.<br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycogen availability can influence glucose transporter 4 (GLUT4) expression in skeletal muscle through unknown mechanisms. The multisubstrate enzyme AMP-activated protein kinase (AMPK) has also been shown to play an important role in the regulation of GLUT4 expression in skeletal muscle. During contraction, AMPK [alpha]2 translocates to the nucleus and the activity of this AMPK isoform is enhanced when skeletal muscle glycogen is low. In this study, we investigated if decreased pre-exercise muscle glycogen levels and increased AMPK [alpha]2 activity reduced the association of AMPK with glycogen and increased AMPK [alpha]2 translocation to the nucleus and GLUT4 mRNA expression following exercise. Seven males performed 60 min of exercise at ~70% [VO.sub.2] peak on 2 occasions: either with normal (control) or low (LG) carbohydrate pre-exercise muscle glycogen content. Muscle samples were obtained by needle biopsy before and after exercise. Low muscle glycogen was associated with elevated AMPK [alpha]2 activity and acetyl-CoA carboxylase [beta] phosphorylation, increased translocation of AMPK [alpha]2 to the nucleus, and increased GLUT4 mRNA. Transfection of primary human myotubes with a constitutively active AMPK adenovirus also stimulated GLUT4 mRNA, providing direct evidence of a role of AMPK in regulating GLUT4 expression. We suggest that increased activation of AMPK [alpha]2 under conditions of low muscle glycogen enhances AMPK [alpha]2 nuclear translocation and increases GLUT4 mRNA expression in response to exercise in human skeletal muscle. <br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<b>Aims/hypothesisb>: The 5′-AMP-activated protein kinase (AMPK) pathway is intact in type 2 diabetic patients and is seen as a target for diabetes treatment. In this study, we aimed to assess the impact of the AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR) on both glucose and fatty acid metabolism in vivo in type 2 diabetic patients.<br /><br /><b>Methodsb>: Stable isotope methodology and blood and muscle biopsy sampling were applied to assess blood glucose and fatty acid kinetics following continuous i.v. infusion of AICAR (0.75 mg kg−1 min−1) and/or NaCl (0.9%) in ten male type 2 diabetic patients (age 64 ± 2 years; BMI 28 ± 1 kg/m2).<br />Results Plasma glucose rate of appearance (R a) was reduced following AICAR administration, while plasma glucose rate of disappearance (R d) was similar in the AICAR and control test. Consequently, blood glucose disposal (R d expressed as a percentage of R a) was increased following AICAR infusion (p < 0.001). Accordingly, a greater decline in plasma glucose concentration was observed following AICAR infusion (p < 0.001). Plasma NEFA R a and R d were both significantly reduced in response to AICAR infusion, and were accompanied by a significant decline in plasma NEFA concentration. Although AMPK phosphorylation in skeletal muscle was not increased, we observed a significant increase in acetyl-CoA carboxylase phosphorylation (p < 0.001).<br /><b><br />Conclusions/interpretationb>: The i.v. administration of AICAR reduces hepatic glucose output, thereby lowering blood glucose concentrations in vivo in type 2 diabetic patients. Furthermore, AICAR administration stimulates hepatic fatty acid oxidation and/or inhibits whole body lipolysis, thereby reducing plasma NEFA concentration. <br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<b>1.&nbsp;b>&nbsp;&nbsp;&nbsp;&nbsp; Skeletal muscle oxidative function and metabolic gene expression are co-ordinately downregulated in metabolic diseases such as insulin resistance, obesity and Type 2 diabetes. Altering skeletal muscle metabolic gene expression to favour enhanced energy expenditure is considered a potential therapy to combat these diseases.<br /><br /><b>2.b>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Histone deacetylases (HDACs) are chromatin-remodelling enzymes that repress gene expression. It has been shown that HDAC4 and 5 co-operatively regulate a number of genes involved in various aspects of metabolism. Understanding how HDACs are regulated provides insights into the mechanisms regulating skeletal muscle metabolic gene expression.<br /><br /><b>3.b>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Multiple kinases control phosphorylation-dependent nuclear export of HDACs, rendering them unable to repress transcription. We have found a major role for the AMP-activated protein kinase (AMPK) in response to energetic stress, yet metabolic gene expression is maintained in the absence of AMPK activity. Preliminary evidence suggests a potential role for protein kinase D, also a Class IIa HDAC kinase, in this response.<br /><br /><b>4.b>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; The HDACs are also regulated by ubiquitin-mediated proteasomal degradation, although the exact mediators of this process have not been identified.<br /><br /><b>5.b>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Because HDACs appear to be critical regulators of skeletal muscle metabolic gene expression, HDAC inhibition could be an effective therapy to treat metabolic diseases.<br /><br /><b>6.b>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Together, these data show that HDAC4 and 5 are critical regulators of metabolic gene expression and that understanding their regulation could provide a number of points of intervention for therapies designed to treat metabolic diseases, such as insulin resistance, obesity and Type 2 diabetes.<br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human patients with mitochondrial diseases are more susceptible to bacterial infections, particularly of the respiratory tract. To investigate the susceptibility of mitochondrially diseased cells to an intracellular bacterial respiratory pathogen, we exploited the advantages of Dictyostelium discoideum as an established model for mitochondrial disease and for Legionella pneumophila pathogenesis. Legionella infection of macrophages involves recruitment of mitochondria to the Legionella-containing phagosome. We confirm here that this also occurs in Dictyostelium and investigate the effect of mitochondrial dysfunction on host cell susceptibility to Legionella. In mitochondrially diseased Dictyostelium strains, the pathogen was taken up at normal rates, but it grew faster and reached counts that were twofold higher than in the wild-type host. We reported previously that other mitochondrial disease phenotypes for Dictyostelium are the result of the activity of an energy-sensing cellular alarm protein, AMP-activated protein kinase (AMPK). Here, we show that the increased ability of mitochondrially diseased cells to support Legionella proliferation is suppressed by antisense-inhibiting expression of the catalytic AMPKα subunit. Conversely, mitochondrial dysfunction is phenocopied, and intracellular Legionella growth is enhanced, by overexpressing an active form of AMPKα in otherwise normal cells. These results indicate that AMPK signalling in response to mitochondrial dysfunction enhances Legionella proliferation in host cells.<br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<b>Purpose:b> We have previously shown that local infusion of a nitric oxide synthase (NOS) inhibitor attenuates increases in leg glucose uptake during exercise in humans. We have also shown that infusion of the NOS substrate, L-arginine (L-Arg), increases glucose clearance, although the mechanisms involved were not determined. A potential mechanism for NO-mediated glucose disposal is via interactions with NOS and the energy sensor AMPactivated protein kinase (AMPK). The aim of this study was to determine the mechanism(s) by which L-Arg infusion increases glucose disposal during exercise in humans by examining total NOS activity and AMPK signaling. <br /><br /><b>Methods:b> Seven males cycled for 120 min at 64% T 1% V˙ O2peak, during which the [6,6-2H]glucose tracer was infused. During the final 60 min of exercise, either saline alone (Control, CON), or saline containing L-Arg HCl (L-Arg, 30 g at 0.5 gIminj1) was coinfused in a double-blind, randomized, counterbalanced order. <br /><br /><b>Results:b> L-Arg increased the glucose rate of disappearance and glucose clearance rate during exercise; however, this was accompanied by a 150% increase in plasma insulin concentration from 65 to 75 min (P G 0.05) that remained significantly elevated until 90 min of exercise. Skeletal muscle AMPK signaling, nNOSK phosphorylation by AMPK, and total NOS activity increased to a similar extent in the two trials. <br /><br /><b>Conclusions:b> The increase in glucose disposal after L-Arg infusion during exercise is likely due to the significantly higher plasma insulin concentration.<br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<b>Aim:b>  Production of reactive oxygen species (ROS) in skeletal muscle is markedly increased during exercise and may be essential for exercise adaptation. We, therefore, investigated the effects of infusion with the antioxidant N-acetylcysteine (NAC) on exercise-induced activation of signalling pathways and genes involved in exercise adaptation in human skeletal muscle.<br /><br /><b>Methods:b>  Subjects completed two exercise tests, 7 days apart, with saline (control, CON) or NAC infusion before and during exercise. Exercise tests comprised of cycling at 71%inline image2peak for 45 min, and then 92% \dot{{V}}\hbox{O}2peak to fatigue, with vastus lateralis biopsies at pre-infusion, after 45-min cycling and at fatigue.<br /><br /><b>Results:b>  Analysis was conducted on the mitogen-activated protein kinase signalling pathways, demonstrating that NAC infusion blocked the exercise-induced increase in JNK phosphorylation, but not ERK1/2, or p38 MAPK. Nuclear factor-κB p65 phosphorylation was unaffected by exercise; however, it was reduced in NAC at fatigue by 14% (P < 0.05) compared with pre-infusion. Analysis of exercise and/or ROS-sensitive genes demonstrated that exercise-induced mRNA expression is ROS dependent of MnSOD, but not PGC-1α, interleukin-6, monocyte chemotactic protein-1, or heat-shock protein 70.<br /><br /><b>Conclusion:b>  These results suggest that inhibition of ROS attenuates some skeletal muscle cell signalling pathways and gene expression involved in adaptations to exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mice lacking the Jak tyrosine kinase member Tyk2 become progressively obese due to aberrant development of Myf5+ brown adipose tissue (BAT). Tyk2 RNA levels in BAT and skeletal muscle, which shares a common progenitor with BAT, are dramatically decreased in mice placed on a high-fat diet and in obese humans. Expression of Tyk2 or the constitutively active form of the transcription factor Stat3 (CAStat3) restores differentiation in Tyk2−/− brown preadipocytes. Furthermore, Tyk2−/− mice expressing CAStat3 transgene in BAT also show improved BAT development, normal levels of insulin, and significantly lower body weights. Stat3 binds to PRDM16, a master regulator of BAT differentiation, and enhances the stability of PRDM16 protein. These results define Tyk2 and Stat3 as critical determinants of brown fat lineage and suggest that altered levels of Tyk2 are associated with obesity in both rodents and humans.<br />