906 resultados para polystyrene sulfonate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate by micro-shear bond strength test, the bond strength of composite resin restoration to enamel submitted to whitening dentifrices. Forty bovine teeth were embedded in polystyrene resin and polished. The specimens were randomly divided into eight groups (n=5), according to the dentifrice (carbamide peroxide, hydrogen peroxide and conventional dentifrice) and the adhesive system (Prime & Bond 2.1 and Adper Single Bond 2). Dentifrice was applied for 15 minutes a day, for 21 days. Thirty minutes after the last exposure to dentifrice, the samples were submitted to a bonding procedure with the respective adhesive system. After that, four buttons of resin were bonded in each sample using transparent cylindrical molds. After 24 hours, the teeth were submitted to the micro-shear bond strength test and subsequent analysis of the fracture mode. Data were submitted to analysis of variance and Fisher's PLSD test (alpha = 0.05). The micro-shear bond strength showed no difference between adhesives systems but a significant reduction was found between the control and carbamide groups (p = 0.0145) and the control and hydrogen groups (p = 0.0370). The evaluation of the failures modes showed that adhesive failures were predominant. Cohesive failures were predominant in group IV The use of dentifrice with peroxides can decrease bonding strength in enamel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research work develops new methods to produce biodegradable starch-based trays for the purpose of replacing expanded polystyrene in the food packaging market. The starch based biopolymers present several drawbacks like poor mechanical properties and very high density. In order to overcome these drawbacks two research lines have been set up: blending thermoplastic starch with biobased reinforcements from agricultural wastes like barley straw and grape wastes, and testing the foamability of these materials with a Microwave-foaming method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the majority of cases of bone fracture requiring surgery, orthopedic implants (screw-plate and screw) are used for osteosynthesis and the infections associated with such implants are due to the growth of microorganisms in biofilms. The objective of this study was to identify microorganisms recovered from osteosynthesis implants used to fix bone fractures, to assess the viability of the cells and the ability of staphylococci to adhere to a substrate and to determine their sensitivity/resistance to antimicrobials. After surgical removal, the metal parts of austenitic stainless steel (ASTM F138/F139 or ISO NBR 5832-1/9) were transported to the Laboratory of Clinical Microbiology, washed in buffer and subjected to ultrasonic bath at 40±2 kHz for 5 minutes. The sonicated fluid was used to seed solid culture media and cell viability was assessed under the microscope by with the aid of a fluorescent marker. The production of extracellular polysaccharide by Staphylococcus spp. was investigated by means of adhesion to a polystyrene plate. The profile of susceptibility to antimicrobials was determined by the disk diffusion assay. The most frequently isolated bacteria included coagulase-negative Staphylococcus resistant to erythromycin, clindamycin and oxacillin. Less frequent were Pseudomonas aeruginosa resistant to trimethoprim/sulfamethoxazole and ampicillin, Acinetobacter baumannii resistant to ceftazidime, Enterobacter cloacae resistant to cephalothin, cefoxitin, cefazolin, levofloxacin and ciprofloxacin, Bacillus spp. and Candida tropicalis. The observation of slides by fluorescence microscope showed clusters of living cells embedded in a transparent matrix. The test for adherence of coagulase-negative Staphylococcus to a polystyrene plate showed that these microorganisms produce extracellular polysaccharide. In conclusion, the metal parts were colonized by bacteria related to orthopedic implant infection, which were resistant to multiple antibiotics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An exocellular β-(1→6)-d-glucan (lasiodiplodan) produced by a strain of Lasiodiplodia theobromae (MMLR) grown on sucrose was derivatized by sulfonation to promote anticoagulant activity. The structural features of the sulfonated β-(1→6)-d-glucan were investigated by UV-vis, FT-IR and 13C NMR spectroscopy, and the anticoagulant activity was investigated by the classical coagulation assays APTT, PT and TT using heparin as standard. The content of sulfur and degree of substitution of the sulfonated glucan was 11.73% and 0.95, respectively. UV spectroscopy showed a band at 261 nm due to the unsaturated bond formed in the sulfonation reaction. Results of FT-IR and 13C NMR indicated that sulfonyl groups were inserted on the polysaccharide. The sulfonated β-(1→6)-d-glucan presented anticoagulant activity as demonstrated by the increase in dose dependence of APTT and TT, and these actions most likely occurred because of the inserted sulfonate groups on the polysaccharide. The lasiodiplodan did not inhibit the coagulation tests. © 2012 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated the physicochemical changes in Nile tilapia (n = 82, 373.71 ± 61.91 g) refrigerated for up to 92 h and in the frozen fillets. The tilapias were captured with nets, slaughtered by ice and water shock (1:1) in a temperature of approximately 2°C for 30 min, and stored refrigerated at 4°C in polystyrene boxes containing ice. The fish were filleted, and filets were weighed and frozen. The drip loss and protein were determined after 23 days of frozen storage. After 4 h of storage, all fish were in full rigor mortis. The pH of the muscles decreased for up to 45 h of the storage period. The fillets obtained from tilapia stored for more than 72 h lost more weight and protein. Thus, the filleting or processing of tilapia should be done before 72 h of cold storage, since deterioration of the fish starts to occur after this period. Copyright © Taylor & Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural rubber (NR) is a renewable polymer with a wide range of applications, which is constantly tailored, further increasing its utilizations. The tensile strength is one of its most important properties susceptible of being enhanced by the simple incorporation of nanofibers. The preparation and characterization of natural-rubber based nanocomposites reinforced with bacterial cellulose (BC) and bacterial cellulose coated with polystyrene (BCPS), yielded high performance materials. The nanocomposites were prepared by a simple and green process, and characterized by tensile tests, dynamical mechanical analysis (DMA), scanning electron microscopy (SEM), and swelling experiments. The effect of the nanofiber content on morphology, static, and dynamic mechanical properties was also investigated. The results showed an increase in the mechanical properties, such as Young's modulus and tensile strength, even with modest nanofiber loadings. © 2013 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently soluble melanin derivatives have been obtained by a synthetic procedure carried out in DMSO (D-melanin). In this work a comparative study of the structural characteristics of synthetic melanin derivatives obtained by oxidation of L-DOPA in H2O and DMSO are presented. To this end, Fourier-transform infrared spectroscopy as well as proton and carbon nuclear magnetic resonance techniques has been employed. In addition, aging effects have been investigated for D-melanin. The results suggest that sulfonate groups (-SO2CH3) from the oxidation of DMSO, are incorporated into melanin, which confers protection to the phenolic hydroxyl group present in its structure. The solubility of D-melanin in DMSO is attributed to the presence of these groups. When D-melanin is left in air for long time periods, the sulfonate groups leave the structure, and an insoluble compound is obtained. NaOH and water have been used, in order to accelerate the release of the sulfonate groups attached to D-melanin, thereby corroborating the proposed structure and the synthesis mechanism. © 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Listeria monocytogenes, considered as one of the most important foodborne pathogens, is easily found on surfaces, particularly in the form of a biofilm. Biofilms are aggregates of cells that facilitate the persistence of these pathogens in food processing environments conferring resistance to the processes of cleaning and may cause contamination of food during processing, thus, representing a danger to public health. Little is known about the dynamics of the formation and regulation of biofilm production in L.monocytogenes, but several authors reported that the luxS gene may be a precursor in this process. In addition, the product of the inlA gene is responsible for facilitating the entry of the microorganism into epithelial cells that express the receptor E-cadherin, also participates in surface attachment. Thus, 32 strains of L.monocytogenes isolated from different foods (milk and vegetables) and from food processing environments were analyzed for the presence of these genes and their ability to form biofilms on three different surfaces often used in the food industry and retail (polystyrene, glass and stainless steel) at different temperatures (4, 20 and 30°C). All strains had the ilnA gene and 25 out of 32 strains (78.1%) were positive for the presence of the luxS gene, but all strains produced biofilm in at least one of the temperatures and materials tested. This suggests that genes in addition to luxS may participate in this process, but were not the decisive factors for biofilm formation. The bacteria adhered better to hydrophilic surfaces (stainless steel and glass) than to hydrophobic ones (polystyrene), since at 20°C for 24h, 30 (93.8%) and 26 (81.3%) produced biofilm in stainless steel and glass, respectively, and just 2 (6.2%) in polystyrene. The incubation time seemed to be an important factor in the process of biofilm formation, mainly at 35°C for 48h, because the results showed a decrease from 30 (93.8%) to 20 (62.5%) and from 27 (84.4%) to 12 (37.5%), on stainless steel and glass, respectively, although this was not significant (. p=0.3847). We conclude that L.monocytogenes is capable of forming biofilm on different surfaces independent of temperature, but the surface composition may be important factor for a faster development of biofilm. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Horticultura) - FCA