962 resultados para polybrominated diphenyl ether
Resumo:
The reaction mechanism of Pd(O)-catalyzed allene bis-selenation reactions is investigated by using density functional methods. The overall reaction mechanism has been examined. It is found that with the bulkier PMe3 ligand, the rate-determining step is the reductive elimination process, while allene insertion and reductive elimination processes are competitive for the rate-determining step with the PH3 ligand, indicating the importance of the ligand effect. For both cis and trans palladium complexes, allene insertion into the Pd-Se bond of the trans palladium complex using the internal carbon atom attached to the selenyl group is prefer-red among the four pathways of allene insertion processes. The formation of sigma-allyl and pi-allyl palladium complexes is favored over that of the sigma-vinyl palladium species. By using methylallene, the regioselectivity of monosubstituted allene insertion into the Pd-Se bond is analyzed.
Resumo:
The rational design, synthesis and characterization of five phosphorescent platinum complexes [(C boolean AND N) Pt(acac)] [Hacac = acetylacetone, HC boolean AND N = 1-methyl-2-(4-fluorophenyl)benzoimidazole (H-FMBI), 1-methyl-2-phenylbenzoimidazole (H-MBI), 1,2-diphenyl-benzoimidazole (H-PBI), 1-(4-(3,6-di-t-butylcarbazol-9-yl)) phenyl-2-phenylbenzoimidazole (t-BuCz-H-PBI), and 1-(4-(3,6-di-(3,6-di-t-butyl-carbazol-9-yl))carbazol-9-yl) phenyl-2-phenylbenzoimidazole (t-BuCzCz-H-PBI)] have been discussed. The crystal structure of (MBI) Pt(acac) shows a nearly ideal square planar geometry around Pt atom and the weak intermolecular interactions with pi-pi spacing of 3.55 angstrom. All of the complexes emit green phosphorescence from the metal-to-ligand charge-transfer (MLCT) excited state with high quantum efficiency (0.08-0.17) at room temperature.
Resumo:
Four cyclometalated Pt(II) complexes, i.e., [(L-2)PtCl] (1b), [(L-3)PtCl] (1c), [(L-2)PtC CC6H5] (2b) and [(L-3)PtC CC6H5] (2c) (HL2 = 4-[p-(N-butyl-N-phenyl)anilino]-6-phenyl-2,2'-bipyridine and HL3 = 4-[p(-N,N'-dibutyl-N'-phenyl)phenylene-diamino]-phenyl-6-phenyl-2,2'-bipyridine), have been synthesized and verified by H-1 NMR, C-13 NMR and X-ray crystallography. Unlike previously reported complexes [(L-1)PtCl] (1a) and [(L-1)PtC CC6H5] (2a) (HL1 = 4,6-diphenyl-2,2'-bipyridine), intense and continuous absorption bands in the region of 300-500 nm with strong metal-to-ligand charge transfer ((MLCT)-M-1) (d pi(Pt) -> pi*(L)) transitions (epsilon similar to 2 x 10(4) dm(3) mol (1) cm (1)) at 449-467 nm were observed in the UV-Vis absorption spectra of complexes 1b, 1c, 2b and 2c.
Resumo:
Highly efficient fluorescent white organic light-emitting diodes (WOLEDs) have been fabricated by using three red, green and blue, separately monochromatic emission layers. The red and blue emissive layers are based on 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) doped N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) and p-bis(p-N,N-diphenyl-amino-styryl) benzene (DSA-ph) doped 2-methyl-9,10-di(2-naphthyl) anthracene (MADN), respectively; and the green emissive layer is based on tris(8-hydroxyquionline)aluminum(Alq(3)) doped with 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl- 1H,5H,1[H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-1]-one (C545T), which is sandwiched between the red and the blue emissive layers. It can be seen that the devices show stable white emission with Commission International de L'Eclairage coordinates of (0.41, 0.41) and color rendering index (CRI) of 84 in a wide range of bias voltages.
Resumo:
Hydrogenation of maleic anhydride (MAH) with Pd/C catalysts in supercritical carbon dioxide (scCO(2)) was investigated. The selectivity for gamma-butyrolactone (GBL) reached 97.3% in scCO(2) at 100% conversion of MAH, which was notably higher than that of 77.4% obtained in organic solvent of ethylene glycol dimethyl ether (EGDME). The particle size of Pd exhibited large influence on the reaction rate and selectivity of GBL. Higher selectivity of GBL was obtained with Pd/C catalyst of smaller Pd particle size, and the rate of GBL selectivity increase as a function of CO2 pressure was found to be significantly correlated with Pd particle size.
Resumo:
In this paper, we report the fabrication of permeable metal-base organic transistors based on N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB)/C-60 heterojunction as both emitter and collector. By applying different polarities of voltage bias to the collector and the base, and input current to the emitter, the ambipolar behavior can be observed. The device demonstrates excellent common-base characteristics both in P-type and N-type modes with common-base current gains of 0.998 and 0.999, respectively.
Resumo:
By utilizing 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline:Li/MoO3 as an effective charge generation layer (CGL), we extend our recently demonstrated single-emitting-layer white organic light-emitting diode (WOLED) to realize an extremely high-efficiency tandem WOLED. This stacked device achieves maximum forward viewing current efficiency of 110.9 cd/A and external quantum efficiency of 43.3% at 1 mu A/cm(2) and emits stable white light with Commission Internationale de L'Eclairage coordinates of (0.34, 0.41) at 16 V. It is noted that the combination of effective single units and CGL is key prerequisite for realizing high-performance tandem WOLEDs.
Resumo:
A highly efficient and colour-stable three-wavelength white organic light-emitting diode with the structure of indium tin oxide (ITO)/MoO3/N,N'-diphenyl-N,N'-bis (1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,4'-N,N'-dicarbazole-biphenyl (CBP): bis(2,4-diphenylquinolyl-N,C-2') iridium( acetylacetonate) (PPQ)(2)Ir(acac)/NPB/p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-Ph):2-methyl-9,10-di(2-naphthyl) anthracene (MADN)/tris (8-hydroxyquinoline) aluminum (AlQ): 10-(2-Benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T)/AlQ/LiF/Al is fabricated and characterized. A current efficiency of 12.3 cdA(-1) at an illumination-relevant brightness of 1000 cd m(-2) is obtained, which rolls off slightly to 10.3 cdA(-1) at a rather high brightness of 10 000 cd m(-2). We attribute this great reduction in the efficiency roll-off to the wise management of singlet and triplet excitons between emissive layers as well as the superior charge injection and diffusion balance in the device.
Resumo:
In this work we present a permeable base transistor consisting of a 60 nm thick N,N'diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine layer or a 40 nm thick 2,6-diphenyl-indenofluorene layer as the emitter, a CalAl/Ca multilayer as the metal base, and p-Si as collector. In the base, the Ca layers are 5 nm thick and the Al layer was varied between 10 and 40 nm. the best results obtained with a 20 nm thick layer. The devices present common-base current gain with both organic layer and silicon acting as emitter, but there is only observable common-emitter current gain when the organic semiconductor acts as emitter. The obtained common-emitter current gain, similar to 2, is independent on collector-emitter voltage, base current and organic emitter in a reasonable wide interval. Air exposure or annealing of the base is necessary to achieve these characteristics, indicating that an oxide layer is beneficial to proper device operation.
Resumo:
A series of carbazole derivatives was synthesized and their electrical and photophysical properties were investigated. It is shown that the triplet energy levels of these hosts are higher than that of the most popular blue phosphorescent material iridium(III) bis[(4,6-difluorophenyl)pyridinato-N,C-2'] picolinate (FIrpic) and the most extensively used phosphorescent host material 4,4'-N,N'-dicarbazole-biphenyl (CBP). These new host materials also showed good thermal stability and high glass transition temperatures (T-g) ranging from 78 to 115 degrees C as the linkage group between the carbazoles was altered. Photophysical measurements indicate that the energy transfer between these new hosts and FIrpic is more efficient than that between CBP and FIrpic. Devices incorporating these novel carbazole derivatives as the host material doped with FIrpic were fabricated with the configurations of ITO/NPB (40 nm)/host:FIrpic (30 nm)/BCP (15 nm)/AlQ (30 nm)/LiF (1 nm)/Al (150 nm). High efficiencies (up to 13.4 cd/A) have been obtained when 1,4-bis (4-(9H-carbazol-9-yl)phenyl)cyclohexane (CBPCH) and bis(4-(9H-carbazol-9-yl)phenyl) ether (CBPE) were used as the host, respectively.
Resumo:
A novel aliphatic polycarbonate from renewable resource was prepared by copolymerization of furfuryl glycidyl ether and CO2 using rare earth ternary catalyst; its number-average molecular weight (M-n) reached 13.3 x 10(4) g/mol. The furfuryl glycidyl ether and CO2 copolymer (PFGEC) was easy to become yellowish at ambient atmosphere due to post polymerization cross-linking reaction oil the furan ring; the gel content was 17.2 wt % after 24 h exposure to air at room temperature. PFGEC could be stabilized by addition of antioxidant 1010 (tetrakis[methylene (3.5-di(tert-butyl)-4-hydroxhydrocinnamate)]methane) in 0.5-3 wt % after copolymerization. The Diels-Alder (DA) reaction between N-phenylmaleimide and the pendant furan ring was also effective for the stabilization of PFGEC by reducing the amount of furan ring and introducing bulky groups into PFGEC. The cyclization degree could reach 72.1% when the molar ratio of N-phenylmaleimide to furan ring was 3: 1, and no gel was observed after 24 h exposure to air. The glass transition temperature (T-g) of PFGEC was 6.8 degrees C, and it increased to 40.3 degrees C after DA reaction (molar ratio of N-phenylmaleimide to furan ring was 3: 1).
Resumo:
Ultrahigh pressure technique was employed to extract ginsenosides from roots of ginseng (Panax ginseng C.A. Meyer). The optimal conditions for ultrahigh pressure extraction (UPE) of total ginsenosides were quantified by UV-vis spectrophotometry with the ginsenoside Re as standard, the signal ginsenosides were quantified by HPLC and ELSD with ginsenosides Re, Rg(1), Rb-1, Rc and Rb-2 as standards. Orthogonal design was applied to evaluate the effects of four independent factors (extraction pressure, extraction temperature, extraction time and ethanol concentration) on the yield and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of ginsenoside, which are based on microwave extraction (ME), ultrasound extraction (UE), soxhlet extraction (SE) and heat reflux extraction (HRE) method. The results showed that UPE method can produce ginsenoside with the highest yield and the best radical scavenging activity compared to other used ones. Scanning electron microscopic (SEM) images of the plant cells after ultrahigh pressure treatment was obtained to provide visual evidence of the disruption effect.
Resumo:
Paclitaxel-loaded poly(ethylene glycol)-b-poly(L-lactide (LA)) (PEG-PLA) micelles were prepared by two methods. One is physical encapsulation of paclitaxel in micelles composed of a PEG-PLA block copolymer and the other is based on a PEG-PLA-paclitaxel conjugate, abbreviated as "conjugate micelles" Their physicochemical characteristics, e.g. critical micelle concentration (CMC), morphology, and micelle size distribution were then evaluated by means of fluorescence spectroscopy, scanning electron microscopy (SEM), and dynamic light scattering (DLS). The results show that the CMC of PEG-PLA-paclitaxel and PEG-PLA are 6.31 x 10(4) and 1.78 x 10(-3) g L-1, respectively. Both micelles assume a spherical shape with comparable diameters and have unimodal size distribution. Moreover, in vitro drug delivery behavior was studied by high performance liquid chromatography (HPLC). The antitumor activity of the paclitaxel-loaded micelles against human liver cancer H7402 cells was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method.
Resumo:
Using the copolymer of acrylonitrile (AN), methyl methacrylate (MMA), and poly(ethylene glycol) methyl ether methacrylate as a backbone and poly(ethylene glycol) methyl ether (PEGME) with 1100 molecular weight as side chains, comb-like gel polymers and their Li salt complexes were synthesized. The dynamic mechanical properties and conductivities were investigated. Results showed that the gel copolymer electrolytes possess two glass transitions: alpha-transition and beta-transition. Based on the time-temperature equivalence principle, a master curve was constructed by selecting T. as reference temperature. By reference to T-0 = 50 degrees C, the relation between log c, and c was found to be linear. The master curves are displaced progressively to higher frequencies as the content of plasticizer is increased. The relation between log tau(p) and the content of plasticizer is also linear.
Resumo:
The separation of Sc(III) from Y(III), La(III) and Yb(III) in [C(8)mim][PF6] containing Cyanex 925 has been investigated, and is reported in this paper. A cation exchange mechanism of Sc(III) in [C(8)mim][PF6] and Cyanex 925 is proposed by study of the influence of anionic and cationic species on the extraction. The coefficient of the equilibrium equation of Sc(III) was confirmed by slope analysis of log D-Sc vs log [Cyanex 925], and the loading capacity also confirmed the stoichiometry of Cyanex 925 to Sc(III) was close to 3:1. Infrared data for Cyanex 925 saturated with Sc(III) in [C(8)mim][PF6] indicated strong interaction between P=O of Cyanex 925 and Sc(III). In addition, the relationship between log D-Sc and temperature showed that temperature had little influence on the extraction process, and the resulting thermodynamic parameters indicated that an exothermic process was involved.