969 resultados para planets : rings


Relevância:

10.00% 10.00%

Publicador:

Resumo:

From studies of protoplanetary disks to extrasolar planets and planetary debris, we aim to understand the full evolution of a planetary system. Observational constraints from ground- and space-based instrumentation allows us to measure the properties of objects near and far and are central to developing this understanding. We present here three observational campaigns that, when combined with theoretical models, reveal characteristics of different stages and remnants of planet formation. The Kuiper Belt provides evidence of chemical and dynamical activity that reveals clues to its primordial environment and subsequent evolution. Large samples of this population can only be assembled at optical wavelengths, with thermal measurements at infrared and sub-mm wavelengths currently available for only the largest and closest bodies. We measure the size and shape of one particular object precisely here, in hopes of better understanding its unique dynamical history and layered composition.

Molecular organic chemistry is one of the most fundamental and widespread facets of the universe, and plays a key role in planet formation. A host of carbon-containing molecules vibrationally emit in the near-infrared when excited by warm gas, T~1000 K. The NIRSPEC instrument at the W.M. Keck Observatory is uniquely configured to study large ranges of this wavelength region at high spectral resolution. Using this facility we present studies of warm CO gas in protoplanetary disks, with a new code for precise excitation modeling. A parameterized suite of models demonstrates the abilities of the code and matches observational constraints such as line strength and shape. We use the models to probe various disk parameters as well, which are easily extensible to others with known disk emission spectra such as water, carbon dioxide, acetylene, and hydrogen cyanide.

Lastly, the existence of molecules in extrasolar planets can also be studied with NIRSPEC and reveals a great deal about the evolution of the protoplanetary gas. The species we observe in protoplanetary disks are also often present in exoplanet atmospheres, and are abundant in Earth's atmosphere as well. Thus, a sophisticated telluric removal code is necessary to analyze these high dynamic range, high-resolution spectra. We present observations of a hot Jupiter, revealing water in its atmosphere and demonstrating a new technique for exoplanet mass determination and atmospheric characterization. We will also be applying this atmospheric removal code to the aforementioned disk observations, to improve our data analysis and probe less abundant species. Guiding models using observations is the only way to develop an accurate understanding of the timescales and processes involved. The futures of the modeling and of the observations are bright, and the end goal of realizing a unified model of planet formation will require both theory and data, from a diverse collection of sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ao longo do século XX, poucos estudos de dendrocronologia foram desenvolvidos com espécies de ambientes tropicais, em função da crença de que as condições climáticas nessas regiões não apresentavam variações suficientemente marcantes e regulares para induzir um ritmo anual de crescimento radial. A realização de trabalhos sobre esse tema nas últimas décadas revelou que a formação de anéis de crescimento anuais nos trópicos pode estar associada a fatores diversos, como: existência de estação seca bem definida, ocorrência de inundações sazonais, respostas ao comportamento fenológico, respostas ao fotoperíodo e a ritmos endógenos. O presente estudo tem por objetivo compreender a dinâmica de crescimento radial de uma espécie da Mata Atlântica se desenvolvendo em ambiente natural. Para tanto, propôs-se: i) investigar a periodicidade da atividade cambial e dos fatores que a influenciam; ii) estimar a idade e taxa de crescimento diamétrico e iii) correlacionar os fatores ambientais com os anéis de crescimento, em indivíduos de Cedrela odorata L. Para o estudo da atividade cambial, foram obtidas amostras de caule a 1,30 m do solo, contendo periderme, faixa cambial e xilema e floema secundários, por métodos não destrutivos. A fenologia vegetativa e a frutificação dos indivíduos amostrados foram acompanhadas durante todo o período do experimento. O material coletado foi processado segundo técnicas usuais em Anatomia Vegetal e analisado sob microscopia óptica e de fluorescência. Os dados de fotoperíodo, precipitação, temperatura e fenologia vegetativa foram correlacionados à atividade cambial. Para o estudo dos anéis de crescimento, as coletas também foram realizadas a 1,30 m do solo, por meio de sonda de Pressler. As amostras obtidas foram polidas e analisadas sob microscópio estereoscópio, para demarcação e aferição do número de anéis de crescimento, e a largura dos anéis foi mensurada para a determinação das taxas de crescimento radial. A série histórica de temperatura e precipitação foi correlacionada à cronologia dos anéis de crescimento. Os resultados indicaram que a atividade cambial segue um ritmo anual de crescimento, correlacionado à sazonalidade do fotoperíodo, da precipitação e da fenologia vegetativa. A análise dos anéis de crescimento permitiu estimar a idade dos indivíduos e determinar a taxa média de incremento e as taxas de incremento diamétrico acumulado e incremento médio anual para a espécie no sítio de estudo. Os dados de incremento radial evidenciaram a ausência de relação entre a idade e o diâmetro das árvores. A análise da variação na largura dos anéis não apresentou correlações significativas com os fatores climáticos analisados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planetary atmospheres exist in a seemingly endless variety of physical and chemical environments. There are an equally diverse number of methods by which we can study and characterize atmospheric composition. In order to better understand the fundamental chemistry and physical processes underlying all planetary atmospheres, my research of the past four years has focused on two distinct topics. First, I focused on the data analysis and spectral retrieval of observations obtained by the Ultraviolet Imaging Spectrograph (UVIS) instrument onboard the Cassini spacecraft while in orbit around Saturn. These observations consisted of stellar occultation measurements of Titan's upper atmosphere, probing the chemical composition in the region 300 to 1500 km above Titan's surface. I examined the relative abundances of Titan's two most prevalent chemical species, nitrogen and methane. I also focused on the aerosols that are formed through chemistry involving these two major species, and determined the vertical profiles of aerosol particles as a function of time and latitude. Moving beyond our own solar system, my second topic of investigation involved analysis of infra-red light curves from the Spitzer space telescope, obtained as it measured the light from stars hosting planets of their own. I focused on both transit and eclipse modeling during Spitzer data reduction and analysis. In my initial work, I utilized the data to search for transits of planets a few Earth masses in size. In more recent research, I analyzed secondary eclipses of three exoplanets and constrained the range of possible temperatures and compositions of their atmospheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth of bulky and platelet shaped α-monoclinic crystals is discussed. A simple method is devised for identifying and orienting them.

The density, previously in disagreement with the value calculated from x-ray studies, is carefully redetermined, and found to be in good agreement with the latter.

The relative dielectric constant is determined, an effort being made to eliminate errors inherent in previous measurements, which have not been in agreement. A two parameter model is derived which explains the anisotropy in the relative dielectric constant of orthorhombic sulfur, which is also composed of 8-atom puckered ring molecules. The model works less well for α-monoclinic selenium. The relative dielectric constant anisotropy is quite noticeable, being 6.06 along the crystal b axis, and 8.52-8.93 normal to the axis.

Thin crystal platelets of α-monoclinic selenium (less than 1µ thick) are used to extend optical transmission measurements up to 4.5eV. Previously the measurements extended up to 2.1 eV, limited by the thickness of the available crystals. The absorption edge is at 2.20 eV, with changes in slope of the absorption coefficient occurring at 2.85 eV and 3.8 eV. Measurement of transmission through solutions of selenium in CS_2 and trichlorethylene yield an absorption edge of 2.75 eV. There is evidence the selenium exists in solution partly as Se_8 rings, the building block of monoclinic selenium. Transmission is measured at low temperatures (80°K and 10°K) using the platelets. The absorption edge is at 2.38 eV and 2.39 eV, respectively, for the two temperatures. Measurements at low temperatures with polarized and unpolarized light reveal interesting absorption anisotropy near 2.65 eV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I. Trimesic acid (1, 3, 5-benzenetricarboxylic acid) crystallizes with a monoclinic unit cell of dimensions a = 26.52 A, b = 16.42 A, c = 26.55 A, and β = 91.53° with 48 molecules /unit cell. Extinctions indicated a space group of Cc or C2/c; a satisfactory structure was obtained in the latter with 6 molecules/asymmetric unit - C54O36H36 with a formula weight of 1261 g. Of approximately 12,000 independent reflections within the CuKα sphere, intensities of 11,563 were recorded visually from equi-inclination Weissenberg photographs.

The structure was solved by packing considerations aided by molecular transforms and two- and three-dimensional Patterson functions. Hydrogen positions were found on difference maps. A total of 978 parameters were refined by least squares; these included hydrogen parameters and anisotropic temperature factors for the C and O atoms. The final R factor was 0.0675; the final "goodness of fit" was 1.49. All calculations were carried out on the Caltech IBM 7040-7094 computer using the CRYRM Crystallographic Computing System.

The six independent molecules fall into two groups of three nearly parallel molecules. All molecules are connected by carboxylto- carboxyl hydrogen bond pairs to form a continuous array of sixmolecule rings with a chicken-wire appearance. These arrays bend to assume two orientations, forming pleated sheets. Arrays in different orientations interpenetrate - three molecules in one orientation passing through the holes of three parallel arrays in the alternate orientation - to produce a completely interlocking network. One third of the carboxyl hydrogen atoms were found to be disordered.

II. Optical transforms as related to x-ray diffraction patterns are discussed with reference to the theory of Fraunhofer diffraction.

The use of a systems approach in crystallographic computing is discussed with special emphasis on the way in which this has been done at the California Institute of Technology.

An efficient manner of calculating Fourier and Patterson maps on a digital computer is presented. Expressions for the calculation of to-scale maps for standard sections and for general-plane sections are developed; space-group-specific expressions in a form suitable for computers are given for all space groups except the hexagonal ones.

Expressions for the calculation of settings for an Eulerian-cradle diffractometer are developed for both the general triclinic case and the orthogonal case.

Photographic materials on pp. 4, 6, 10, and 20 are essential and will not reproduce clearly on Xerox copies. Photographic copies should be ordered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygenic photosynthesis fundamentally transformed our planet by releasing molecular oxygen and altering major biogeochemical cycles, and this exceptional metabolism relies on a redox-active cubane cluster of four manganese atoms. Not only is manganese essential for producing oxygen, but manganese is also only oxidized by oxygen and oxygen-derived species. Thus the history of manganese oxidation provides a valuable perspective on our planet’s environmental past, the ancient availability of oxygen, and the evolution of oxygenic photosynthesis. Broadly, the general trends of the geologic record of manganese deposition is a chronicle of ancient manganese oxidation: manganese is introduced into the fluid Earth as Mn(II) and it will remain only a trace component in sedimentary rocks until it is oxidized, forming Mn(III,IV) insoluble precipitates that are concentrated in the rock record. Because these manganese oxides are highly favorable electron acceptors, they often undergo reduction in sediments through anaerobic respiration and abiotic reaction pathways.

The following dissertation presents five chapters investigating manganese cycling both by examining ancient examples of manganese enrichments in the geologic record and exploring the mineralogical products of various pathways of manganese oxide reduction that may occur in sediments. The first chapter explores the mineralogical record of manganese and reports abundant manganese reduction recorded in six representative manganese-enriched sedimentary sequences. This is followed by a second chapter that further analyzes the earliest significant manganese deposit 2.4 billon years ago, and determines that it predated the origin of oxygenic photosynthesis and thus is supporting evidence for manganese-oxidizing photosynthesis as an evolutionary precursor prior to oxygenic photosynthesis. The lack of oxygen during this early manganese deposition was partially established using oxygen-sensitive detrital grains, and so a third chapter delves into what these grains mean for oxygen constraints using a mathematical model. The fourth chapter returns to processes affecting manganese post-deposition, and explores the relationships between manganese mineral products and (bio)geochemical reduction processes to understand how various manganese minerals can reveal ancient environmental conditions and biological metabolisms. Finally, a fifth chapter considers whether manganese can be mobilized and enriched in sedimentary rocks and determines that manganese was concentrated secondarily in a 2.5 billion-year-old example from South Africa. Overall, this thesis demonstrates how microbial processes, namely photosynthesis and metal oxide-reducing metabolisms, are linked to and recorded in the rich complexity of the manganese mineralogical record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Notwithstanding advances in modern chemical methods, the selective installation of sterically encumbered carbon stereocenters, in particular all-carbon quaternary centers, remains an unsolved problem in organic chemistry. The prevalence of all-carbon quaternary centers in biologically active natural products and pharmaceutical compounds provides a strong impetus to address current limitations in the state of the art of their generation. This thesis presents four related projects, all of which share in the goal of constructing highly-congested carbon centers in a stereoselective manner, and in the use of transition-metal catalyzed alkylation as a means to address that goal.

The first research described is an extension of allylic alkylation methodology previously developed in the Stoltz group to small, strained rings. This research constitutes the first transition metal-catalyzed enantioselective α-alkylation of cyclobutanones. Under Pd-catalysis, this chemistry affords all–carbon α-quaternary cyclobutanones in good to excellent yields and enantioselectivities.

Next is described our development of a (trimethylsilyl)ethyl β-ketoester class of enolate precursors, and their application in palladium–catalyzed asymmetric allylic alkylation to yield a variety of α-quaternary ketones and lactams. Independent coupling partner synthesis engenders enhanced allyl substrate scope relative to allyl β-ketoester substrates; highly functionalized α-quaternary ketones generated by the union of our fluoride-triggered β-ketoesters and sensitive allylic alkylation coupling partners serve to demonstrate the utility of this method for complex fragment coupling.

Lastly, our development of an Ir-catalyzed asymmetric allylic alkylation of cyclic β-ketoesters to afford highly congested, vicinal stereocenters comprised of tertiary and all-carbon quaternary centers with outstanding regio-, diastereo-, and enantiocontrol is detailed. Implementation of a subsequent Pd-catalyzed alkylation affords dialkylated products with pinpoint stereochemical control of both chiral centers. The chemistry is then extended to include acyclic β-ketoesters and similar levels of selective and functional group tolerance are observed. Critical to the successful development of this method was the employment of iridium catalysis in concert with N-aryl-phosphoramidite ligands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A noncommutative 2-torus is one of the main toy models of noncommutative geometry, and a noncommutative n-torus is a straightforward generalization of it. In 1980, Pimsner and Voiculescu in [17] described a 6-term exact sequence, which allows for the computation of the K-theory of noncommutative tori. It follows that both even and odd K-groups of n-dimensional noncommutative tori are free abelian groups on 2n-1 generators. In 1981, the Powers-Rieffel projector was described [19], which, together with the class of identity, generates the even K-theory of noncommutative 2-tori. In 1984, Elliott [10] computed trace and Chern character on these K-groups. According to Rieffel [20], the odd K-theory of a noncommutative n-torus coincides with the group of connected components of the elements of the algebra. In particular, generators of K-theory can be chosen to be invertible elements of the algebra. In Chapter 1, we derive an explicit formula for the First nontrivial generator of the odd K-theory of noncommutative tori. This gives the full set of generators for the odd K-theory of noncommutative 3-tori and 4-tori.

In Chapter 2, we apply the graded-commutative framework of differential geometry to the polynomial subalgebra of the noncommutative torus algebra. We use the framework of differential geometry described in [27], [14], [25], [26]. In order to apply this framework to noncommutative torus, the notion of the graded-commutative algebra has to be generalized: the "signs" should be allowed to take values in U(1), rather than just {-1,1}. Such generalization is well-known (see, e.g., [8] in the context of linear algebra). We reformulate relevant results of [27], [14], [25], [26] using this extended notion of sign. We show how this framework can be used to construct differential operators, differential forms, and jet spaces on noncommutative tori. Then, we compare the constructed differential forms to the ones, obtained from the spectral triple of the noncommutative torus. Sections 2.1-2.3 recall the basic notions from [27], [14], [25], [26], with the required change of the notion of "sign". In Section 2.4, we apply these notions to the polynomial subalgebra of the noncommutative torus algebra. This polynomial subalgebra is similar to a free graded-commutative algebra. We show that, when restricted to the polynomial subalgebra, Connes construction of differential forms gives the same answer as the one obtained from the graded-commutative differential geometry. One may try to extend these notions to the smooth noncommutative torus algebra, but this was not done in this work.

A reconstruction of the Beilinson-Bloch regulator (for curves) via Fredholm modules was given by Eugene Ha in [12]. However, the proof in [12] contains a critical gap; in Chapter 3, we close this gap. More specifically, we do this by obtaining some technical results, and by proving Property 4 of Section 3.7 (see Theorem 3.9.4), which implies that such reformulation is, indeed, possible. The main motivation for this reformulation is the longer-term goal of finding possible analogs of the second K-group (in the context of algebraic geometry and K-theory of rings) and of the regulators for noncommutative spaces. This work should be seen as a necessary preliminary step for that purpose.

For the convenience of the reader, we also give a short description of the results from [12], as well as some background material on central extensions and Connes-Karoubi character.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planets are assembled from the gas, dust, and ice in the accretion disks that encircle young stars. Ices of chemical compounds with low condensation temperatures (<200 K), the so-called volatiles, dominate the solid mass reservoir from which planetesimals are formed and are thus available to build the protoplanetary cores of gas/ice giant planets. It has long been thought that the regions near the condensation fronts of volatiles are preferential birth sites of planets. Moreover, the main volatiles in disks are also the main C-and O-containing species in (exo)planetary atmospheres. Understanding the distribution of volatiles in disks and their role in planet-formation processes is therefore of great interest.

This thesis addresses two fundamental questions concerning the nature of volatiles in planet-forming disks: (1) how are volatiles distributed throughout a disk, and (2) how can we use volatiles to probe planet-forming processes in disks? We tackle the first question in two complementary ways. We have developed a novel super-resolution method to constrain the radial distribution of volatiles throughout a disk by combining multi-wavelength spectra. Thanks to the ordered velocity and temperature profiles in disks, we find that detailed constraints can be derived even with spatially and spectrally unresolved data -- provided a wide range of energy levels are sampled. We also employ high-spatial resolution interferometric images at (sub)mm frequencies using the Atacama Large Millimeter Array (ALMA) to directly measure the radial distribution of volatiles.

For the second question, we combine volatile gas emission measurements with those of the dust continuum emission or extinction to understand dust growth mechanisms in disks and disk instabilities at planet-forming distances from the central star. Our observations and models support the idea that the water vapor can be concentrated in regions near its condensation front at certain evolutionary stages in the lifetime of protoplanetary disks, and that fast pebble growth is likely to occur near the condensation fronts of various volatile species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observational studies of our solar system's small-body populations (asteroids and comets) offer insight into the history of our planetary system, as these minor planets represent the left-over building blocks from its formation. The Palomar Transient Factory (PTF) survey began in 2009 as the latest wide-field sky-survey program to be conducted on the 1.2-meter Samuel Oschin telescope at Palomar Observatory. Though its main science program has been the discovery of high-energy extragalactic sources (such as supernovae), during its first five years PTF has collected nearly five million observations of over half a million unique solar system small bodies. This thesis begins to analyze this vast data set to address key population-level science topics, including: the detection rates of rare main-belt comets and small near-Earth asteroids, the spin and shape properties of asteroids as inferred from their lightcurves, the applicability of this visible light data to the interpretation of ultraviolet asteroid observations, and a comparison of the physical properties of main-belt and Jovian Trojan asteroids. Future sky-surveys would benefit from application of the analytical techniques presented herein, which include novel modeling methods and unique applications of machine-learning classification. The PTF asteroid small-body data produced in the course of this thesis work should remain a fertile source of solar system science and discovery for years to come.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetics of the reduction of O2 by Ru(NH3)6+2 as catalyzed by cobalt(II) tetrakis(4-N-methylpyridyl)porphyrin are described both in homogeneous solution and when the reactants are confined to Nafion coatings on graphite electrodes. The catalytic mechanism is determined and the factors that can control the total reduction currents at Nafion-coated electrodes are specified. A kinetic zone diagram for analyzing the behavior of catalyst-mediator-substrate systems at polymer coated electrodes is presented and utilized in identifying the current-limiting processes. Good agreement is demonstrated between calculated and measured reduction currents at rotating disk electrodes. The experimental conditions that will yield the optimum performance of coated electrodes are discussed, and a relationship is derived for the optimal coating thickness.

The relation between the reduction potentials of adsorbed and unadsorbed cobalt(III) tetrakis(4-N-methylpyridyl)porphyrin and those where it catalyzes the electroreduction of dioxygen is described. There is an unusually large change in the formal potential of the Co(III) couple upon the adsorption of the porphyrin on the graphite electrode surface. The mechanism in which the (inevitably) adsorbed porphyrin catalyzes the reduction of O2 is in accord with a general mechanistic scheme proposed for most monomeric cobalt porphyrins.

Four new dimeric metalloporphyrins (prepared in the laboratory of Professor C. K. Chang) have the two porphyrin rings linked by an anthracene bridge attached to meso positions. The electrocatalytic behavior of the diporphyrins towards the reduction of O2 at graphite electrodes has been examined for the following combination of metal centers: Co-Cu, Co-Fe, Fe-Fe, Fe-H2. The Co-Cu diporphyrin catalyzes the reduction of O2 to H2O2 but no further. The other three catalysts all exhibit mixed reduction pathways leading to both H2O2 and H2O. However, the pathways that lead to H2O do not involve H2O2 as an intermediate. A possible mechanistic scheme is offered to account for the observed behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen is the only atom for which the Schr odinger equation is solvable. Consisting only of a proton and an electron, hydrogen is the lightest element and, nevertheless, is far from being simple. Under ambient conditions, it forms diatomic molecules H2 in gas phase, but di erent temperature and pressures lead to a complex phase diagram, which is not completely known yet. Solid hydrogen was rst documented in 1899 [1] and was found to be isolating. At higher pressures, however, hydrogen can be metallized. In 1935 Wigner and Huntington predicted that the metallization pressure would be 25 GPa [2], where molecules would disociate to form a monoatomic metal, as alkali metals that lie below hydrogen in the periodic table. The prediction of the metallization pressure turned out to be wrong: metallic hydrogen has not been found yet, even under a pressure as high as 320 GPa. Nevertheless, extrapolations based on optical measurements suggest that a metallic phase may be attained at 450 GPa [3]. The interest of material scientist in metallic hydrogen can be attributed, at least to a great extent, to Ashcroft, who in 1968 suggested that such a system could be a hightemperature superconductor [4]. The temperature at which this material would exhibit a transition from a superconducting to a non-superconducting state (Tc) was estimated to be around room temperature. The implications of such a statement are very interesting in the eld of astrophysics: in planets that contain a big quantity of hydrogen and whose temperature is below Tc, superconducting hydrogen may be found, specially at the center, where the gravitational pressure is high. This might be the case of Jupiter, whose proportion of hydrogen is about 90%. There are also speculations suggesting that the high magnetic eld of Jupiter is due to persistent currents related to the superconducting phase [5]. Metallization and superconductivity of hydrogen has puzzled scientists for decades, and the community is trying to answer several questions. For instance, what is the structure of hydrogen at very high pressures? Or a more general one: what is the maximum Tc a phonon-mediated superconductor can have [6]? A great experimental e ort has been carried out pursuing metallic hydrogen and trying to answer the questions above; however, the characterization of solid phases of hydrogen is a hard task. Achieving the high pressures needed to get the sought phases requires advanced technologies. Diamond anvil cells (DAC) are commonly used devices. These devices consist of two diamonds with a tip of small area; for this reason, when a force is applied, the pressure exerted is very big. This pressure is uniaxial, but it can be turned into hydrostatic pressure using transmitting media. Nowadays, this method makes it possible to reach pressures higher than 300 GPa, but even at this pressure hydrogen does not show metallic properties. A recently developed technique that is an improvement of DAC can reach pressures as high as 600 GPa [7], so it is a promising step forward in high pressure physics. Another drawback is that the electronic density of the structures is so low that X-ray di raction patterns have low resolution. For these reasons, ab initio studies are an important source of knowledge in this eld, within their limitations. When treating hydrogen, there are many subtleties in the calculations: as the atoms are so light, the ions forming the crystalline lattice have signi cant displacements even when temperatures are very low, and even at T=0 K, due to Heisenberg's uncertainty principle. Thus, the energy corresponding to this zero-point (ZP) motion is signi cant and has to be included in an accurate determination of the most stable phase. This has been done including ZP vibrational energies within the harmonic approximation for a range of pressures and at T=0 K, giving rise to a series of structures that are stable in their respective pressure ranges [8]. Very recently, a treatment of the phases of hydrogen that includes anharmonicity in ZP energies has suggested that relative stability of the phases may change with respect to the calculations within the harmonic approximation [9]. Many of the proposed structures for solid hydrogen have been investigated. Particularly, the Cmca-4 structure, which was found to be the stable one from 385-490 GPa [8], is metallic. Calculations for this structure, within the harmonic approximation for the ionic motion, predict a Tc up to 242 K at 450 GPa [10]. Nonetheless, due to the big ionic displacements, the harmonic approximation may not su ce to describe correctly the system. The aim of this work is to apply a recently developed method to treat anharmonicity, the stochastic self-consistent harmonic approximation (SSCHA) [11], to Cmca-4 metallic hydrogen. This way, we will be able to study the e ects of anharmonicity in the phonon spectrum and to try to understand the changes it may provoque in the value of Tc. The work is structured as follows. First we present the theoretical basis of the calculations: Density Functional Theory (DFT) for the electronic calculations, phonons in the harmonic approximation and the SSCHA. Then we apply these methods to Cmca-4 hydrogen and we discuss the results obtained. In the last chapter we draw some conclusions and propose possible future work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central theme of this thesis is the use of imidazolium-based organic structure directing agents (OSDAs) in microporous materials synthesis. Imidazoliums are advantageous OSDAs as they are relatively inexpensive and simple to prepare, show robust stability under microporous material synthesis conditions, have led to a wide range of products, and have many permutations in structure that can be explored. The work I present involves the use of mono-, di-, and triquaternary imidazolium-based OSDAs in a wide variety of microporous material syntheses. Much of this work was motivated by successful computational predictions (Chapter 2) that led me to continue to explore these types of OSDAs. Some of the important discoveries with these OSDAs include the following: 1) Experimental evaluation and confirmation of a computational method that predicted a new OSDA for pure-silica STW, a desired framework containing helical pores that was previously very difficult to synthesize. 2) Discovery of a number of new imidazolium OSDAs to synthesize zeolite RTH, a zeolite desired for both the methanol-to-olefins reaction as well as NOX reduction in exhaust gases. This discovery enables the use of RTH for many additional investigations as the previous OSDA used to make this framework was difficult to synthesize, such that no large scale preparations would be practical. 3) The synthesis of pure-silica RTH by topotactic condensation from a layered precursor (denoted CIT-10), that can also be pillared to make a new framework material with an expanded pore system, denoted CIT-11, that can be calcined to form a new microporous material, denoted CIT-12. CIT-10 is also interesting since it is the first layered material to contain 8 membered rings through the layers, making it potentially useful in separations if delamination methods can be developed. 4) The synthesis of a new microporous material, denoted CIT-7 (framework code CSV) that contains a 2-dimensional system of 8 and 10 membered rings with a large cage at channel intersections. This material is especially important since it can be synthesized as a pure-silica framework under low-water, fluoride-mediated synthesis conditions, and as an aluminosilicate material under hydroxide mediated conditions. 5) The synthesis of high-silica heulandite (HEU) by topotactic condensation as well as direct synthesis, demonstrating new, more hydrothermally stable compositions of a previously known framework. 6) The synthesis of germanosilicate and aluminophosphate LTA using a triquaternary OSDA. All of these materials show the diverse range of products that can be formed from OSDAs that can be prepared by straightforward syntheses and have made many of these materials accessible for the first time under facile zeolite synthesis conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A.G. Vulih has shown how an essentially unique intrinsic multiplication can be defined in certain types of Riesz spaces (vector lattices) L. In general, the multiplication is not universally defined in L, but L can always be imbedded in a large space L# in which multiplication is universally defined.

If ф is a normal integral in L, then ф can be extended to a normal integral on a large space L1(ф) in L#, and L1(ф) may be regarded as an abstract integral space. A very general form of the Radon-Nikodym theorem can be proved in L1(ф), and this can be used to give a relatively simple proof of a theorem of Segal giving a necessary and sufficient condition that the Radon-Nikodym theorem hold in a measure space.

In another application, the multiplication is used to give a representation of certain Riesz spaces as rings of operators on a Hilbert space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding and catalytic properties of hen's egg white lysozyme have been studied by a variety of techniques. These studies show that the enzyme has three contiguous binding subsites, A, B, and C. The application of nuclear magnetic resonance (NMR) spectroscopy to probe the binding environment of several saccharides to lysozyme has demonstrated that the reducing end sugar rings of chitotriose, chitobiose and the β-form of N-acetylglucosamine all bind in subsite C. The central sugar ring of chitotriose and the sugar ring at the nonreducing end of chitobiose were found to bind in subsite B, while the nonreducing end sugar residue of chitotriose occupied subsite A. The dynamics of the binding process has also been investigated by NMR. The formation rate constant of chitobiose--and chitotriose-enzyme complexes were found to be about 4 X 10-6 M-1 sec-1 with small activation energies.

The stereochemical path of the lysozyme catalyzed hydrolysis of glycosidic bonds has been shown to proceed with at least 99.7% retention of configuration at C-1 of the sugar. The lysozyme catalyzed hydrolysis of glucosidic bonds has been shown to be largely carbonium ion in character by virtue of the α-deuterium kinetic isotope effect (kH/kD = 1.11) observed for the reaction. It is probable that the mechanism of action of the enzyme involves a carbonium ion intermediate which is stereospecifically quenched by solvent. However, acetamido group participation cannot be ruled out for natural substrates.