897 resultados para peace movements
Resumo:
People homozygous for mutations in the Niemann-Pick type C1 (NPC1) gene have physiological defects, including excess accumulation of intracellular cholesterol and other lipids, that lead to drastic neural and liver degeneration. The NPC1 multipass transmembrane protein is resident in late endosomes and lysosomes, but its functions are unknown. We find that organelles containing functional NPC1-fluorescent protein fusions undergo dramatic movements, some in association with extending strands of endoplasmic reticulum. In NPC1 mutant cells the NPC1-bearing organelles that normally move at high speed between perinuclear regions and the periphery of the cell are largely absent. Pulse-chase experiments with dialkylindocarbocyanine low-density lipoprotein showed that NPC1 organelles function late in the endocytic pathway; NPC1 protein may aid the partitioning of endocytic and lysosomal compartments. The close connection between NPC1 and the drug U18666A, which causes NPC1-like organelle defects, was established by rescuing drug-treated cells with overproduced NPC1. U18666A inhibits outward movements of NPC1 organelles, trapping membranes and cholesterol in perinuclear organelles similar to those in NPC1 mutant cells, even when cells are grown in lipoprotein-depleted serum. We conclude that NPC1 protein promotes the creation and/or movement of particular late endosomes, which rapidly transport materials to and from the cell periphery.
Resumo:
To investigate the molecular basis of the voltage sensor that triggers excitation–contraction (EC) coupling, the four-domain pore subunit of the dihydropyridine receptor (DHPR) was cut in the cytoplasmic linker between domains II and III. cDNAs for the I-II domain (α1S 1–670) and the III-IV domain (α1S 701-1873) were expressed in dysgenic α1S-null myotubes. Coexpression of the two fragments resulted in complete recovery of DHPR intramembrane charge movement and voltage-evoked Ca2+ transients. When fragments were expressed separately, EC coupling was not recovered. However, charge movement was detected in the I-II domain expressed alone. Compared with I-II and III-IV together, the charge movement in the I-II domain accounted for about half of the total charge (Qmax = 3 ± 0.23 vs. 5.4 ± 0.76 fC/pF, respectively), and the half-activation potential for charge movement was significantly more negative (V1/2 = 0.2 ± 3.5 vs. 22 ± 3.4 mV, respectively). Thus, interactions between the four internal domains of the pore subunit in the assembled DHPR profoundly affect the voltage dependence of intramembrane charge movement. We also tested a two-domain I-II construct of the neuronal α1A Ca2+ channel. The neuronal I-II domain recovered charge movements like those of the skeletal I-II domain but could not assist the skeletal III-IV domain in the recovery of EC coupling. The results demonstrate that a functional voltage sensor capable of triggering EC coupling in skeletal myotubes can be recovered by the expression of complementary fragments of the DHPR pore subunit. Furthermore, the intrinsic voltage-sensing properties of the α1A I-II domain suggest that this hemi-Ca2+ channel could be relevant to neuronal function.
Resumo:
Kinesin is a molecular motor that transports organelles along microtubules. This enzyme has two identical 7-nm-long motor domains, which it uses to move between consecutive tubulin binding sites spaced 8 nm apart along a microtubular protofilament. The molecular mechanism of this movement, which remains to be elucidated, may be common to all families of motor proteins. In this study, a high-resolution optical-trap microscope was used to measure directly the magnitude of abrupt displacements produced by a single kinesin molecule transporting a microscopic bead. The distribution of magnitudes reveals that kinesin not only undergoes discrete 8-nm movements, in agreement with previous work [Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S.M. (1993) Nature (London) 365, 721-727], but also frequently exhibits smaller movements of about 5 nm. A possible explanation for these unexpected smaller movements is that kinesin's movement from one dimer to the next along a protofilament involves at least two distinct events in the mechanical cycle.
Resumo:
Although the gene defect responsible for Huntington disease (HD) has recently been identified, the pathogenesis of the disease remains obscure. One potential mechanism is that the gene defect may lead to an impairment of energy metabolism followed by slow excitotoxic neuronal injury. In the present study we examined whether chronic administration of 3-nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase, can replicate the neuropathologic and clinical features of HD in nonhuman primates. After 3-6 weeks of 3-NP administration, apomorphine treatment induced a significant increase in motor activity as compared with saline-treated controls. Animals showed both choreiform movements, as well as foot and limb dystonia, which are characteristic of HD. More prolonged 3-NP treatment in two additional primates resulted in spontaneous dystonia and dyskinesia accompanied by lesions in the caudate and putamen seen by magnetic resonance imaging. Histologic evaluation showed that there was a depletion of calbindin neurons, astrogliosis, sparing of NADPH-diaphorase neurons, and growth-related proliferative changes in dendrites of spiny neurons similar to changes in HD. The striosomal organization of the striatum and the nucleus accumbens were spared. These findings show that chronic administration of 3-NP to nonhuman primates can replicate many of the characteristic motor and histologic features of HD, further strengthening the possibility that a subtle impairment of energy metabolism may play a role in its pathogenesis.
Resumo:
A method for simultaneous iontophoretic injections of the anterograde tracer Phaseolus vulgaris leukoagglutinin and the retrograde tracer fluorogold was used to characterize in the rat a hypothalamothalamocortical pathway ending in a region thought to regulate attentional mechanisms by way of eye and head movements. The relevant medial hypothalamic nuclei receive pheromonal information from the amygdala and project to specific parts of the thalamic nucleus reuniens and anteromedial nucleus, which then project to a specific lateral part of the retrosplenial area (or medial visual cortex). This cortical area receives a convergent input from the lateral posterior thalamic nucleus and projects to the superior colliculus. Bidirectional connections with the hippocampal formation suggest that activity in this circuit is modified by previous experience. Striking parallels with basal ganglia circuitry are noted.
Resumo:
This study examines the road to statehood for the Zionist and Palestinian movements. There are three components which frame this investigation: 1. social movements and the practices in which they engage that are aimed at establishing statehood for a people; 2. distinctive configurations of the international system and the manner in which both the material and ideational foundations of that system pulls units towards conformity and predictable behavior; and finally, 3. the role of agency, that is, the way in which instrumentally rational individuals attempt to push the structure in which they are embedded towards a configuration that is better suited to their interests and objectives The most influential factor guiding these struggles for national liberation are those forces which emanate from the prevailing structure of the international system. Not only was it demonstrated that the established material and ideational preferences of existing states have strong bearing on a movement’s ideological orientation and by consequence its chosen course of struggle, but hegemonic order configurations also define political cleavages and in so doing present movement leaders with both tactical and strategic opportunities by harnessing or exploiting those cleavages. From the agency perspective, the cases showed that the leadership of each movement was highly influential in the determination of a movement’s success or failure.
Resumo:
Our eyes never remain still. Even when we stare at a fixed point, small involuntary movements take place in our eyes in an imperceptible manner. Researchers agree on the presence of three main contributions to eye movements when we fix the gaze: microsaccades, drifts and tremor. These small movements carry the image across the retina stimulating the photoreceptors and thus avoiding fading. Nowadays it is commonly accepted that these movements can improve the discrimination performance of the retina. In this paper, several retina models with and without fixational eye movements were implemented by mean of RetinaStudio tool to test the feasibility of these models to be incorporated in future neuroprostheses. For this purpose each retina model has been stimulated with natural scene images in two experiments. Results are discussed from the point of view of a neuroprosthesis development.
Resumo:
We present a targetless motion tracking method for detecting planar movements with subpixel accuracy. This method is based on the computation and tracking of the intersection of two nonparallel straight-line segments in the image of a moving object in a scene. The method is simple and easy to implement because no complex structures have to be detected. It has been tested and validated using a lab experiment consisting of a vibrating object that was recorded with a high-speed camera working at 1000 fps. We managed to track displacements with an accuracy of hundredths of pixel or even of thousandths of pixel in the case of tracking harmonic vibrations. The method is widely applicable because it can be used for distance measuring amplitude and frequency of vibrations with a vision system.
Resumo:
This small paper-bound notebook contains notes Winthrop made concerning the cases he heard between 1784 and 1795 as a Justice of the Peace for Middlesex County. These notes provide insight into the nature of crimes being committed in Cambridge in the post-Revolutionary period, as well as the names and occupations of those accused and their victims. The cases involved the following individuals, among others: Samuel Bridge, Benjamin Estabrook, Joseph Jeffords, Cato Bordman, John Kidder, Spenser Goddin, Jacob Cromwell, Benjamin Stratton, Mary Flood, Bender Temple, John Willett, Joseph Hartwell, Nathaniel Stratton, Amos Washburn, Francis Moore, Thomas Malone, Thomas Cook, and Amboy Brown. The cases involved a range of offenses, and occasionally Winthrop decided that a case exceeded his jurisdiction and forwarded it to the General Court or the Supreme Judicial Court.