927 resultados para parametric uncertainty
Resumo:
We report less than 1-dB cross-talk penalty for 26 DWDM channels modulated at 43.7 Gb/s RZ-DPSK when amplified by a fiber optical parametric amplifier showing compatibility with high-capacity (> 1 Tb/s) communication systems. © 2010 Optical Society of America.
Resumo:
We report high-capacity (> 1 Tb/s) amplification by a fiber optical parametric amplifier in different roles displaying compatibility and versatility in future WDM networks with phase-shift keying modulation format.
Resumo:
Biomass-To-Liquid (BTL) is one of the most promising low carbon processes available to support the expanding transportation sector. This multi-step process produces hydrocarbon fuels from biomass, the so-called “second generation biofuels” that, unlike first generation biofuels, have the ability to make use of a wider range of biomass feedstock than just plant oils and sugar/starch components. A BTL process based on gasification has yet to be commercialized. This work focuses on the techno-economic feasibility of nine BTL plants. The scope was limited to hydrocarbon products as these can be readily incorporated and integrated into conventional markets and supply chains. The evaluated BTL systems were based on pressurised oxygen gasification of wood biomass or bio-oil and they were characterised by different fuel synthesis processes including: Fischer-Tropsch synthesis, the Methanol to Gasoline (MTG) process and the Topsoe Integrated Gasoline (TIGAS) synthesis. This was the first time that these three fuel synthesis technologies were compared in a single, consistent evaluation. The selected process concepts were modelled using the process simulation software IPSEpro to determine mass balances, energy balances and product distributions. For each BTL concept, a cost model was developed in MS Excel to estimate capital, operating and production costs. An uncertainty analysis based on the Monte Carlo statistical method, was also carried out to examine how the uncertainty in the input parameters of the cost model could affect the output (i.e. production cost) of the model. This was the first time that an uncertainty analysis was included in a published techno-economic assessment study of BTL systems. It was found that bio-oil gasification cannot currently compete with solid biomass gasification due to the lower efficiencies and higher costs associated with the additional thermal conversion step of fast pyrolysis. Fischer-Tropsch synthesis was the most promising fuel synthesis technology for commercial production of liquid hydrocarbon fuels since it achieved higher efficiencies and lower costs than TIGAS and MTG. None of the BTL systems were competitive with conventional fossil fuel plants. However, if government tax take was reduced by approximately 33% or a subsidy of £55/t dry biomass was available, transport biofuels could be competitive with conventional fuels. Large scale biofuel production may be possible in the long term through subsidies, fuels price rises and legislation.
Resumo:
An applied psychological framework for coping with performance uncertainty in sport and work systems is presented. The theme of personal control serves to integrate ideas prevalent in industrial and organisational psychology, the stress literature and labour process theory. These commonly focus on the promotion of tacit knowledge and learned resourcefulness in individual performers. Finally, data from an empirical evaluation of a development training programme to facilitate self-regulation skills in professional athletes are briefly highlighted.
Resumo:
Self-adaptive systems have the capability to autonomously modify their behavior at run-time in response to changes in their environment. Self-adaptation is particularly necessary for applications that must run continuously, even under adverse conditions and changing requirements; sample domains include automotive systems, telecommunications, and environmental monitoring systems. While a few techniques have been developed to support the monitoring and analysis of requirements for adaptive systems, limited attention has been paid to the actual creation and specification of requirements of self-adaptive systems. As a result, self-adaptivity is often constructed in an ad-hoc manner. In order to support the rigorous specification of adaptive systems requirements, this paper introduces RELAX, a new requirements language for self-adaptive systems that explicitly addresses uncertainty inherent in adaptive systems. We present the formal semantics for RELAX in terms of fuzzy logic, thus enabling a rigorous treatment of requirements that include uncertainty. RELAX enables developers to identify uncertainty in the requirements, thereby facilitating the design of systems that are, by definition, more flexible and amenable to adaptation in a systematic fashion. We illustrate the use of RELAX on smart home applications, including an adaptive assisted living system.
Resumo:
Self-adaptation enables software systems to respond to changing environmental contexts that may not be fully understood at design time. Designing a dynamically adaptive system (DAS) to cope with this uncertainty is challenging, as it is impractical during requirements analysis and design time to anticipate every environmental condition that the DAS may encounter. Previously, the RELAX language was proposed to make requirements more tolerant to environmental uncertainty, and Claims were applied as markers of uncertainty that document how design assumptions affect goals. This paper integrates these two techniques in order to assess the validity of Claims at run time while tolerating minor and unanticipated environmental conditions that can trigger adaptations. We apply the proposed approach to the dynamic reconfiguration of a remote data mirroring network that must diffuse data while minimizing costs and exposure to data loss. Results show RELAXing Claims enables a DAS to reduce adaptation costs. © 2012 Springer-Verlag.
Resumo:
Dynamically adaptive systems (DASs) are intended to monitor the execution environment and then dynamically adapt their behavior in response to changing environmental conditions. The uncertainty of the execution environment is a major motivation for dynamic adaptation; it is impossible to know at development time all of the possible combinations of environmental conditions that will be encountered. To date, the work performed in requirements engineering for a DAS includes requirements monitoring and reasoning about the correctness of adaptations, where the DAS requirements are assumed to exist. This paper introduces a goal-based modeling approach to develop the requirements for a DAS, while explicitly factoring uncertainty into the process and resulting requirements. We introduce a variation of threat modeling to identify sources of uncertainty and demonstrate how the RELAX specification language can be used to specify more flexible requirements within a goal model to handle the uncertainty. © 2009 Springer Berlin Heidelberg.
Resumo:
Requirements awareness should help optimize requirements satisfaction when factors that were uncertain at design time are resolved at runtime. We use the notion of claims to model assumptions that cannot be verified with confidence at design time. By monitoring claims at runtime, their veracity can be tested. If falsified, the effect of claim negation can be propagated to the system's goal model and an alternative means of goal realization selected automatically, allowing the dynamic adaptation of the system to the prevailing environmental context. © 2011 IEEE.
Resumo:
Self-adaptive systems have the capability to autonomously modify their behaviour at run-time in response to changes in their environment. Self-adaptation is particularly necessary for applications that must run continuously, even under adverse conditions and changing requirements; sample domains include automotive systems, telecommunications, and environmental monitoring systems. While a few techniques have been developed to support the monitoring and analysis of requirements for adaptive systems, limited attention has been paid to the actual creation and specification of requirements of self-adaptive systems. As a result, self-adaptivity is often constructed in an ad-hoc manner. In this paper, we argue that a more rigorous treatment of requirements explicitly relating to self-adaptivity is needed and that, in particular, requirements languages for self-adaptive systems should include explicit constructs for specifying and dealing with the uncertainty inherent in self-adaptive systems. We present RELAX, a new requirements language for selfadaptive systems and illustrate it using examples from the smart home domain. © 2009 IEEE.
Resumo:
Practitioners assess performance of entities in increasingly large and complicated datasets. If non-parametric models, such as Data Envelopment Analysis, were ever considered as simple push-button technologies, this is impossible when many variables are available or when data have to be compiled from several sources. This paper introduces by the 'COOPER-framework' a comprehensive model for carrying out non-parametric projects. The framework consists of six interrelated phases: Concepts and objectives, On structuring data, Operational models, Performance comparison model, Evaluation, and Result and deployment. Each of the phases describes some necessary steps a researcher should examine for a well defined and repeatable analysis. The COOPER-framework provides for the novice analyst guidance, structure and advice for a sound non-parametric analysis. The more experienced analyst benefits from a check list such that important issues are not forgotten. In addition, by the use of a standardized framework non-parametric assessments will be more reliable, more repeatable, more manageable, faster and less costly. © 2010 Elsevier B.V. All rights reserved.
Resumo:
The spatial distribution of self-employment in India: evidence from semiparametric geoadditive models, Regional Studies. The entrepreneurship literature has rarely considered spatial location as a micro-determinant of occupational choice. It has also ignored self-employment in developing countries. Using Bayesian semiparametric geoadditive techniques, this paper models spatial location as a micro-determinant of self-employment choice in India. The empirical results suggest the presence of spatial occupational neighbourhoods and a clear north–south divide in self-employment when the entire sample is considered; however, spatial variation in the non-agriculture sector disappears to a large extent when individual factors that influence self-employment choice are explicitly controlled. The results further suggest non-linear effects of age, education and wealth on self-employment.
Resumo:
The Semantic Web relies on carefully structured, well defined, data to allow machines to communicate and understand one another. In many domains (e.g. geospatial) the data being described contains some uncertainty, often due to incomplete knowledge; meaningful processing of this data requires these uncertainties to be carefully analysed and integrated into the process chain. Currently, within the SemanticWeb there is no standard mechanism for interoperable description and exchange of uncertain information, which renders the automated processing of such information implausible, particularly where error must be considered and captured as it propagates through a processing sequence. In particular we adopt a Bayesian perspective and focus on the case where the inputs / outputs are naturally treated as random variables. This paper discusses a solution to the problem in the form of the Uncertainty Markup Language (UncertML). UncertML is a conceptual model, realised as an XML schema, that allows uncertainty to be quantified in a variety of ways i.e. realisations, statistics and probability distributions. UncertML is based upon a soft-typed XML schema design that provides a generic framework from which any statistic or distribution may be created. Making extensive use of Geography Markup Language (GML) dictionaries, UncertML provides a collection of definitions for common uncertainty types. Containing both written descriptions and mathematical functions, encoded as MathML, the definitions within these dictionaries provide a robust mechanism for defining any statistic or distribution and can be easily extended. Universal Resource Identifiers (URIs) are used to introduce semantics to the soft-typed elements by linking to these dictionary definitions. The INTAMAP (INTeroperability and Automated MAPping) project provides a use case for UncertML. This paper demonstrates how observation errors can be quantified using UncertML and wrapped within an Observations & Measurements (O&M) Observation. The interpolation service uses the information within these observations to influence the prediction outcome. The output uncertainties may be encoded in a variety of UncertML types, e.g. a series of marginal Gaussian distributions, a set of statistics, such as the first three marginal moments, or a set of realisations from a Monte Carlo treatment. Quantifying and propagating uncertainty in this way allows such interpolation results to be consumed by other services. This could form part of a risk management chain or a decision support system, and ultimately paves the way for complex data processing chains in the Semantic Web.
Resumo:
The increasing intensity of global competition has led organizations to utilize various types of performance measurement tools for improving the quality of their products and services. Data envelopment analysis (DEA) is a methodology for evaluating and measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. All the data in the conventional DEA with input and/or output ratios assumes the form of crisp numbers. However, the observed values of data in real-world problems are sometimes expressed as interval ratios. In this paper, we propose two new models: general and multiplicative non-parametric ratio models for DEA problems with interval data. The contributions of this paper are fourfold: (1) we consider input and output data expressed as interval ratios in DEA; (2) we address the gap in DEA literature for problems not suitable or difficult to model with crisp values; (3) we propose two new DEA models for evaluating the relative efficiencies of DMUs with interval ratios, and (4) we present a case study involving 20 banks with three interval ratios to demonstrate the applicability and efficacy of the proposed models where the traditional indicators are mostly financial ratios. © 2011 Elsevier Inc.
Resumo:
Incorporating further information into the ordered weighted averaging (OWA) operator weights is investigated in this paper. We first prove that for a constant orness the minimax disparity model [13] has unique optimal solution while the modified minimax disparity model [16] has alternative optimal OWA weights. Multiple optimal solutions in modified minimax disparity model provide us opportunity to define a parametric aggregation OWA which gives flexibility to decision makers in the process of aggregation and selecting the best alternative. Finally, the usefulness of the proposed parametric aggregation method is illustrated with an application in metasearch engine. © 2011 Elsevier Inc. All rights reserved.