955 resultados para paire de vortex-antivortex


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we present middle atmospheric water vapor (H2O) and ozone (O3) measurements obtained by ground-based microwave radiometers at three European locations in Bern (47° N), Onsala (57° N) and Sodankylä (67° N) during Northern winter 2009/2010. In January 2010, a major sudden stratospheric warming (SSW) occurred in the Northern Hemisphere whose signatures are evident in the ground-based observations of H2O and O3. The observed anomalies in H2O and O3 are mostly explained by the relative location of the polar vortex with respect to the measurement locations. The SSW started on 26 January 2010 and was most pronounced by the end of January. The zonal mean temperature in the middle stratosphere (10 hPa) increased by approximately 25 Kelvin within a few days. The stratospheric vortex weakened during the SSW and shifted towards Europe. In the mesosphere, the vortex broke down, which lead to large scale mixing of polar and midlatitudinal air. After the warming, the polar vortex in the stratosphere split into two weaker vortices and in the mesosphere, a new, pole-centered vortex formed with maximum wind speed of 70 m s−1 at approximately 40° N. The shift of the stratospheric vortex towards Europe was observed in Bern as an increase in stratospheric H2O and a decrease in O3. The breakdown of the mesospheric vortex during the SSW was observed at Onsala and Sodankylä as a sudden increase in mesospheric H2O. The following large-scale descent inside the newly formed mesospheric vortex was well captured by the H2O observations in Sodankylä. In order to combine the H2O observations from the three different locations, we applied the trajectory mapping technique on our H2O observations to derive synoptic scale maps of the H2O distribution. Based on our observations and the 3-D wind field, this method allows determining the approximate development of the stratospheric and mesospheric polar vortex and demonstrates the potential of a network of ground-based instruments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lake-effect snow is an important constraint on ecological and socio-economic systems near the North American Great Lakes. Little is known about the Holocene history of lake-effect snowbelts, and it is difficult to decipher how lake-effect snowfall abundance affected ecosystem development. We conducted oxygen-isotope analysis of calcite in lake-sediment cores from northern Lower Michigan to infer Holocene climatic variation and assess snowbelt development. The two lakes experience the same synoptic-scale climatic systems, but only one of them (Huffman Lake) receives a significant amount of lake-effect snow. A 177-cm difference in annual snowfall causes groundwater inflow at Huffman Lake to be 18O-depleted by 2.3‰ relative to O'Brien Lake. To assess when the lake-effect snowbelt became established, we compared calcite-δ18O profiles of the last 11,500 years from these two sites. The chronologies are based on accelerator-mass-spectrometry 14C ages of 11 and 17 terrestrial-plant samples from Huffman and O'Brien lakes, respectively. The values of δ18O are low at both sites from 11,500 to 9500 cal yr BP when the Laurentide Ice Sheet (LIS) exerted a dominant control over the regional climate and provided periodic pulses of meltwater to the Great Lakes basin. Carbonate δ18O increases by 2.6‰ at O'Brien Lake and by 1.4‰ at Huffman Lake between 9500 and 7000 cal yr BP, suggesting a regional decline in the proportion of runoff derived from winter precipitation. The Great Lakes snowbelt probably developed between 9500 and 5500 cal yr BP as inferred from the progressive 18O-depletion at Huffman Lake relative to O'Brien Lake, with the largest increase of lake-effect snow around 7000 cal yr BP. Lake-effect snow became possible at this time because of increasing contact between the Great Lakes and frigid arctic air. These changes resulted from enhanced westerly flow over the Great Lakes as the LIS collapsed, and from rapidly rising Great Lakes levels during the Nipissing Transgression. The δ18O difference between Huffman and O'Brien lakes declines after 5500 cal yr BP, probably because of a northward shift of the polar vortex that brought increasing winter precipitation to the entire region. However, δ18O remains depleted at Huffman Lake relative to O'Brien Lake because of the continued production of lake-effect snow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tropical cyclogenesis is generally considered to occur in regions devoid of baroclinic structures; however, an appreciable number of tropical cyclones (TCs) form in baroclinic environments each year. A global climatology of these baroclinically influenced TC developments is presented in this study. An objective classification strategy is developed that focuses on the characteristics of the environmental state rather than on properties of the vortex, thus allowing for a pointwise “development pathway” classification of reanalysis data. The resulting climatology shows that variability within basins arises primarily as a result of local surface thermal contrasts and the positions of time-mean features on the subtropical tropopause. The pathway analyses are sampled to generate a global climatology of 1948–2010 TC developments classified by baroclinic influence: nonbaroclinic (70%), low-level baroclinic (9%), trough induced (5%), weak tropical transition (11%), and strong tropical transition (5%). All basins other than the North Atlantic are dominated by nonbaroclinic events; however, there is extensive interbasin variability in secondary development pathways. Within each basin, subregions and time periods are identified in which the relative importance of the development pathways also differs. The efficiency of tropical cyclogenesis is found to be highly dependent on development pathway. The peak efficiency defined in the classification subspace straddles the nonbaroclinic/trough-induced boundary, suggesting that the optimal environment for TC development includes a baroclinic contribution from an upper-level disturbance. By assessing the global distribution of baroclinically influenced TC formations, this study identifies regions and pathways whose further study could yield improvements in our understanding of this important subset of TC developments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vortices (and anti-vortices). Although topological actions do not have a classical limit, they still lead to the universal behaviour of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition — at least up to moderate vortex suppression. In the massive phase, the analytically known Step Scaling Function (SSF) is reproduced in numerical simulations. However, deviations from the expected universal behaviour of the lattice artifacts are observed. In the massless phase, the BKT value of the critical exponent ηc is confirmed. Hence, even though for some topological actions vortices cost zero energy, they still drive the standard BKT transition. In addition we identify a vortex-free transition point, which deviates from the BKT behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observations of the ozone profile by a ground-based microwave radiometer in Switzerland indicate a dominant 20-day oscillation in stratospheric ozone, possibly related to oscillations of the polar vortex edge during winter. For further understanding of the nature of the 20-day oscillation, the ozone data set of ERA Interim meteorological reanalysis is analyzed at the latitude belt of 47.5° N and in the time from 1979 to 2010. Spectral analysis of ozone time series at 7 hPa indicates that the 20-day oscillation is maximal at two locations: 7.5° E, 47.5° N and 60° E, 47.5° N. Composites of the stream function are derived for different phases of the 20-day oscillation of stratospheric ozone at 7 hPa in the Northern Hemisphere. The streamline at Ψ = −2 × 107 m2 s−1 is in the vicinity of the polar vortex edge. The other streamline at Ψ = 4 × 107 m2 s1 surrounds the Aleutian anticyclone and goes to the subtropics. The composites show 20-day period standing oscillations at the polar vortex edge and in the subtropics above Northern Africa, India, and China. The 20-day period standing oscillation above Aral Sea and India is correlated to the strength of the Aleutian anticyclone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide statistical evidence of the effect of the solar wind dynamic pressure (Psw) on the northern winter and spring circulations. We find that the vertical structure of the Northern Annular Mode (NAM), the zonal mean circulation, and Eliassen-Palm (EP)-flux anomalies show a dynamically consistent pattern of downward propagation over a period of ~45 days in response to positive Psw anomalies. When the solar irradiance is high, the signature of Psw is marked by a positive NAM anomaly descending from the stratosphere to the surface during winter. When the solar irradiance is low, the Psw signal has the opposite sign, occurs in spring, and is confined to the stratosphere. The negative Psw signal in the NAM under low solar irradiance conditions is primarily governed by enhanced vertical EP-flux divergence and a warmer polar region. The winter Psw signal under high solar irradiance conditions is associated with positive anomalies of the horizontal EP-flux divergence at 55°N–75°N and negative anomalies at 25°N–45°N, which corresponds to the positive NAM anomaly. The EP-flux divergence anomalies occur ~15 days ahead of the mean-flow changes. A significant equatorward shift of synoptic-scale Rossby wave breaking (RWB) near the tropopause is detected during January–March, corresponding to increased anticyclonic RWB and a decrease in cyclonic RWB. We suggest that the barotropic instability associated with asymmetric ozone in the upper stratosphere and the baroclinic instability associated with the polar vortex in the middle and lower stratosphere play a critical role for the winter signal and its downward propagation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present highly resolved, annually dated, calibrated proxies for atmospheric circulation from several Antarctic ice cores (ITASE (International Trans-Antarctic Scientific Expedition), Siple Dome, Law Dome) that reveal decadal-scale associations with a South Pole ice-core Be-10 proxy for solar variability over the last 600 years and annual-scale associations with solar variability since AD 1720. We show that increased (decreased) solar irradiance is associated with increased (decreased) zonal wind strength near the edge of the Antarctic polar vortex. The association is particularly strong in the Indian and Pacific Oceans and as such may contribute to understanding climate forcing that controls drought in Australia and other Southern Hemisphere climate events. We also include evidence suggestive of solar forcing of atmospheric circulation near the edge of the Arctic polar vortex based on ice-core records from Mount Logan, Yukon Territory, Canada, and both central and south Greenland as enticement for future investigations. Our identification of solar forcing of the polar atmosphere and its impact on lower latitudes offers a mechanism for better understanding modern climate variability and potentially the initiation of abrupt climate-change events that operate on decadal and faster scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 250-year, high-resolution, multivariate ice core record from LGB65 (70degrees50'07"S, 77degrees04'29"E; 1850 m asl), Princess Elizabeth Land (PEL), is used to investigate sea level pressure (SLP) variability over the southern Indian Ocean (SIO). Empirical orthogonal function (EOF) analysis reveals that the first EOF (EOF1) of the glaciochemical record from LGB65 represents most of the variability in sea salt throughout the 250-year record. EOF1 is negatively correlated (95% confidence level and higher) to instrumental mean sea level pressure (MSLP) at Kerguelen and New Amsterdam islands, SIO. On the basis of comparison with NCEP/NCAR reanalysis, strong correlations were found between sea-salt variations and a quasi-stationary low that lies to the north of Prydz Bay, SIO. Comparison with a 250-year-long summer transpolar index (STPI) inferred from sub-Antarctic tree ring records reveals strong coherency. Decadal-scale SLP variability over SIO suggests shifting of the polar vortex. Prominent decadal-scale deepening of the southern Indian Ocean low (SIOL) exists circa 1790, 1810, 1835, 1860, 1880, 1900, and 1940 A. D., continuously after the 1970s, and prominent weakening circa 1750, 1795, 1825, 1850, 1870, 1890, 1910, and 1955 A. D. The LGB65 sea-salt record is characterized by significant decadal-scale variability with a strong similar to21-year periodic structure (99.9% confidence level). The relationship between LGB65 sea salt and solar irradiance changes shows that this periodicity is possibly the solar Hale cycle ( 22 years).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the characteristics of the quasi 16-day wave in the mesosphere during boreal winter 2011/2012 using observations of water vapor from ground-based microwave radiometers and satellite data. The ground-based microwave radiometers are located in Seoul (South Korea, 37° N), Bern (Switzerland, 47° N) and Sodankylä (Finland, 67° N). The quasi 16-day wave is observed in the mesosphere at all three locations, while the dominant period increases with latitude from 15 days at Seoul to 20 days at Sodankylä. The observed evolution of the quasi 16-day wave confirms that the wave activity is strongly decreased during a sudden stratospheric warming that occurred in mid-January 2012. Using satellite data from the Microwave Limb Sounder on the Aura satellite, we examine the zonal characteristics of the quasi 16-day wave and conclude that the observed waves above the mid-latitudinal stations Seoul and Bern are eastward-propagating s=−1 planetary waves with periods of 15 to 16 days, while the observed oscillation above the polar station Sodankylä is a standing oscillation with a period of approximately 20 days. The strongest relative wave amplitudes in water vapor during the investigated time period are approximately 15%. The wave activity varies strongly along a latitude circle. The activity of the quasi 16-day wave in mesospheric water vapor during boreal winter 2011/2012 is strongest over Northern Europe, the North Atlantic ocean and North-West Canada. The region of highest wave activity seems to be related to the position of the polar vortex. We conclude that the classic approach to characterize planetary waves zonally averaged along a latitude circle is not sufficient to explain the local observations because of the strong longitudinal dependence of the wave activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the characteristics of the quasi 16-day wave in the mesosphere during boreal winter 2011/2012 using observations of water vapor from ground-based microwave radiometers and satellite data. The ground-based microwave radiometers are located in Seoul (South Korea, 37° N), Bern (Switzerland, 47° N) and Sodankylä (Finland, 67° N). The quasi 16-day wave is observed in the mesosphere at all three locations, while the dominant period increases with latitude from 15 days at Seoul to 20 days at Sodankylä. The observed evolution of the quasi 16-day wave confirms that the wave activity is strongly decreased during a sudden stratospheric warming that occurred in mid-January 2012. Using satellite data from the Microwave Limb Sounder on the Aura satellite, we examine the zonal characteristics of the quasi 16-day wave and conclude that the observed waves above the midlatitudinal stations Seoul and Bern are eastward-propagating s = −1 planetary waves with periods of 15 to 16 days, while the observed oscillation above the polar station Sodankylä is a standing wave with a period of approximately 20 days. The strongest relative wave amplitudes in water vapor during the investigated time period are approximately 15%. The wave activity varies strongly along a latitude circle. The activity of the quasi 16-day wave in mesospheric water vapor during boreal winter 2011/2012 is strongest over northern Europe, the North Atlantic Ocean and northwestern Canada. The region of highest wave activity seems to be related to the position of the polar vortex. We conclude that the classic approach to characterize planetary waves zonally averaged along a latitude circle is not sufficient to explain the local observations because of the strong longitudinal dependence of the wave activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geomagnetic excursions, i.e. short periods in time with much weaker geomagnetic fields and substantial changes in the position of the geomagnetic pole, occurred repeatedly in the Earth's history, e.g. the Laschamp event about 41 kyr ago. Although the next such excursion is certain to come, little is known about the timing and possible consequences for the state of the atmosphere and the ecosystems. Here we use the global chemistry climate model SOCOL-MPIOM to simulate the effects of geomagnetic excursions on atmospheric ionization, chemistry and dynamics. Our simulations show significantly increased concentrations of nitrogen oxides (NOx) in the entire stratosphere, especially over Antarctica (+15%), due to enhanced ionization by galactic cosmic rays. Hydrogen oxides (HOx) are also produced in greater amounts (up to +40%) in the tropical and subtropical lower stratosphere, while their destruction by reactions with enhanced NOx prevails over the poles and in high altitudes (by −5%). Stratospheric ozone concentrations decrease globally above 20 km by 1–2% and at the northern hemispheric tropopause by up to 5% owing to the accelerated NOx-induced destruction. A 5% increase is found in the southern lower stratosphere and troposphere. In response to these changes in ozone and the concomitant changes in atmospheric heating rates, the Arctic vortex intensifies in boreal winter, while the Antarctic vortex weakens in austral winter and spring. Surface wind anomalies show significant intensification of the southern westerlies at their poleward edge during austral winter and a pronounced northward shift in spring. Major impacts on the global climate seem unlikely.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The newly developed atmosphere–ocean-chemistry-climate model SOCOL-MPIOM is presented by demonstrating the influence of the interactive chemistry module on the climate state and the variability. Therefore, we compare pre-industrial control simulations with (CHEM) and without (NOCHEM) interactive chemistry. In general, the influence of the chemistry on the mean state and the variability is small and mainly restricted to the stratosphere and mesosphere. The largest differences are found for the atmospheric dynamics in the polar regions, with slightly stronger northern and southern winter polar vortices in CHEM. The strengthening of the vortex is related to larger stratospheric temperature gradients, which are attributed to a parametrization of the absorption of ozone and oxygen in the Lyman-alpha, Schumann–Runge, Hartley, and Higgins bands. This effect is parametrized in the version with interactive chemistry only. A second reason for the temperature differences between CHEM and NOCHEM is related to diurnal variations in the ozone concentrations in the higher atmosphere, which are missing in NOCHEM. Furthermore, stratospheric water vapour concentrations differ substantially between the two experiments, but their effect on the temperatures is small. In both setups, the simulated intensity and variability of the northern polar vortex is inside the range of present day observations. Sudden stratospheric warming events are well reproduced in terms of their frequency, but the distribution amongst the winter months is too uniform. Additionally, the performance of SOCOL-MPIOM under changing external forcings is assessed for the period 1600–2000 using an ensemble of simulations driven by a spectral solar forcing reconstruction. The amplitude of the reconstruction is large in comparison to other state-of-the-art reconstructions, providing an upper limit for the importance of the solar signal. In the pre-industrial period (1600–1850) the simulated surface temperature trends are in reasonable agreement with temperature reconstructions, although the multi-decadal variability is more pronounced. This enhanced variability can be attributed to the variability in the solar forcing. The simulated temperature reductions during the Maunder Minimum are in the lowest probability range of the proxy records. During the Dalton Minimum, when also volcanic forcing is an important driver of temperature variations, the agreement is better. In the industrial period from 1850 onward SOCOL-MPIOM overestimates the temperature increase in comparison to observational data sets. Sensitivity simulations show that this overestimation can be attributed to the increasing trend in the solar forcing reconstruction that is used in this study and an additional warming induced by the simulated ozone changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we compare the diurnal variation in stratospheric ozone derived from free-running simulations of the Whole Atmosphere Community Climate Model (WACCM) and from reanalysis data of the atmospheric service MACC (Monitoring Atmospheric Composition and Climate) which both use a similar stratospheric chemistry module. We find good agreement between WACCM and the MACC reanalysis for the diurnal ozone variation in the high-latitude summer stratosphere based on photochemistry. In addition, we consult the ozone data product of the ERA-Interim reanalysis. The ERA-Interim reanalysis ozone system with its long-term ozone parametrization can not capture these diurnal variations in the upper stratosphere that are due to photochemistry. The good dynamics representations, however, reflects well dynamically induced ozone variations in the lower stratosphere. For the high-latitude winter stratosphere we describe a novel feature of diurnal variation in ozone where changes of up to 46.6% (3.3 ppmv) occur in monthly mean data. For this effect good agreement between the ERA-Interim reanalysis and the MACC reanalysis suggest quite similar diurnal advection processes of ozone. The free-running WACCM model seriously underestimates the role of diurnal advection processes at the polar vortex at the two tested resolutions. The intercomparison of the MACC reanalysis and the ERA-Interim reanalysis demonstrates how global reanalyses can benefit from a chemical representation held by a chemical transport model. The MACC reanalysis provides an unprecedented description of the dynamics and photochemistry of the diurnal variation of stratospheric ozone which is of high interest for ozone trend analysis and research on atmospheric tides. We confirm the diurnal variation in ozone at 5 hPa by observations of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) experiment and selected sites of the Network for Detection of Atmospheric Composition Change (NDACC). The latter give valuable insight even to diurnal variation of ozone in the polar winter stratosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ground-based microwave radiometer MIAWARA-C recorded the upper stratospheric and lower mesospheric water vapour distribution continuously from June 2011 to March 2013 above the Arctic station of Sodankylä, Finland (67.4° N, 26.6° E) without major interruptions and offers water vapour profiles with temporal resolution of 1 h for average conditions. The water vapour time series of MIAWARA-C shows strong periodic variations in both summer and winter related to the quasi-2-day wave. Above 0.1 hPa the amplitudes are strongest in summer. The stratospheric wintertime 2-day wave is pronounced for both winters on altitudes below 0.1 hPa and reaches a maximum amplitude of 0.8 ppmv in November 2011. Over the measurement period, the instrument monitored the changes in water vapour linked to two sudden stratospheric warmings in early 2012 and 2013. Based on the water vapour measurements, the descent rate in the vortex after the warmings is 364 m d−1 for 2012 and 315 m d−1 for 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change). Keeping in mind that the instruments are based on different hardware and calibration setups, a height-dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different data sets, the Microwave Limb Sounder (MLS) on the Aura satellite is used to serve as a kind of traveling standard. A domain-averaging TM (trajectory mapping) method is applied which simplifies the subsequent validation of the quality of the trajectory-mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW) accompanied by the polar vortex breakdown; a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high potential of a network of ground-based remote sensing instruments to synthesize hemispheric maps of water vapor.