974 resultados para oceanic crust


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term biological time-series in the oceans are relatively rare. Using the two longest of these we show how the information value of such ecological time-series increases through space and time in terms of their potential policy value. We also explore the co-evolution of these oceanic biological time-series with changing marine management drivers. Lessons learnt from reviewing these sequences of observations provide valuable context for the continuation of existing time-series and perspective for the initiation of new time-series in response to rapid global change. Concluding sections call for a more integrated approach to marine observation systems and highlight the future role of ocean observations in adaptive marine management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequent locations of thermal fronts in UK shelf seas were identified using an archive of 30,000 satellite images acquired between 1999 and 2008, and applied as a proxy for pelagic diversity in the designation of Marine Protected Areas (MPAs). Networks of MPAs are required for conservation of critical marine habitats within Europe, and there are similar initiatives worldwide. Many pelagic biodiversity hotspots are related to fronts, for example cetaceans and basking sharks around the Isle of Man, Hebrides and Cornwall, and hence remote sensing can address this policy need in regions with insufficient species distribution data. This is the first study of UK Continental Shelf front locations to use a 10-year archive of full-resolution (1.1 km) AVHRR data, revealing new aspects of their spatial and seasonal variability. Frontal locations determined at sea or predicted by ocean models agreed closely with the new frequent front maps, which also identified many additional frontal zones. These front maps were among the most widely used datasets in the recommendation of UK MPAs, and would be applicable to other geographic regions and to other policy drivers such as facilitating the deployment of offshore renewable energy devices with minimal environmental impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of pressure on upper ocean free-living bacteria and bacteria attached to rapidly sinking particles was investigated through studying their ability to synthesize DNA and protein by measuring their rate of 3H-thymidine and 3H-leucine incorporation. Studies were carried out on samples from the NE Atlantic under the range of pressures (1–430 atm) encountered by sinking aggregates during their journey to the deep-sea bed. Thymidine and leucine incorporation rates per bacterium attached to sinking particles from 200 m were about six and ten times higher, respectively, than the free-living bacterial assemblage. The ratio of leucine incorporation rate per cell to thymidine incorporation rate per cell was significantly different between the larger attached (18.9:1) and smaller free-living (10.4:1) assemblages. The rates of leucine and thymidine incorporation decreased exponentially with increasing pressure for the free-living and linearly for attached bacteria, while there was no significant influence of pressure on cell numbers. At 100 atm leucine and thymidine incorporation rate per free-living bacterium was reduced to 73 and 20%, respectively, relative to that measured at 1 atm. Pressure of 100 atm reduced leucine and thymidine incorporation per attached bacterium to 94 and 70%, and at 200 atm these rates were reduced to 34 and 51%, respectively, relative to those measured at 1 atm. There was no significant uncoupling of thymidine and leucine incorporation for either the free-living or attached bacterial assemblages with increasing pressure, indicating that the processess of DNA and protein synthesis may be equally affected by increasing pressure. It is therefore unlikely that bacteria, originating from surface waters, attached to rapidly sinking particles play a role in particle remineralization below approximately 1000–2000 m. These results may help to explain the occurrence of relatively fresh aggregates on the deep-sea bed that still contain sufficient organic carbon to fuel the rapid growth of benthic micro-organisms; they also indicate that the effect of pressure on microbial processes may be important in oceanic biogeochemical cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the relationship between picoeukaryote phytoplankton (< 2 mu m) and the deep layer of new production (NO3- uptake) in the nitracline of the eastern subtropical North Atlantic Ocean. Indices of NO3- uptake kinetics obtained within the lower 15 % of the euphotic zone demonstrate that subsurface NO3- uptake maxima are coincident with localised peaks in maximum uptake rates (V-max) and, crucially, with maximum picoeukaryote abundance. The mean rate of NO3- utilization at the nitracline is typically 10-fold higher than in surface waters despite much lower in situ irradiance. These observations confirm a high affinity for NO3-, most likely by the resident picoeukaryote community, and we conservatively estimate mean cellular uptake rates of between 0.27 and 1.96 fmol NO3- cell(-1) h(-1). Greater scrutiny of the taxonomic composition of the picoeukaryote group is required to further understand this deep layer of new production and its importance for nitrogen cycling and export production, given longstanding assumptions that picoplankton do not contribute directly to export fluxes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: Oceanographic fronts are physical interfaces between water masses that differ in properties such as temperature, salinity, turbidity and chl a enrichment. Bio-physical coupling along fronts can lead to the development of pelagic biodiversity hotspots. A diverse range of marine vertebrates have been shown to associate with fronts, using them as foraging and migration habitats. Elucidation of the ecological significance of fronts generates a better understanding of marine ecosystem functioning, conferring opportunities to improve management of anthropogenic activities in the oceans. This study presents novel insight into the oceanographic drivers of habitat use in a population of marine turtles characterised by an oceanic-neritic foraging dichotomy. Using satellite tracking data from adult female loggerhead turtles nesting at Cape Verde (n = 12), we test the hypothesis that oceanic-foraging loggerheads associate with mesocale (10s – to 100s of km) thermal fronts. We use high-resolution (1 km) composite front mapping to characterise frontal activity in the Canary Current Large Marine Ecosystem (LME) over 2 temporal scales: (1) seasonal front frequency and (2) 7-day front metrics. Our use-availability analysis indicates that oceanic loggerheads show a preference for the highly productive upwelling region between Cape Verde and mainland Africa, an area of intense frontal activity. Within the upwelling region, turtles appear to forage epipelagically around mesoscale thermal fronts, exploiting profitable foraging opportunities resulting from physical aggregation of prey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used coincident Envisat RA2 and AATSR temperature and wind speed data from 2008/2009 to calculate the global net sea-air flux of dimethyl sulfide (DMS), which we estimate to be 19.6 Tg S a21. Our monthly flux calculations are compared to open ocean eddy correlation measurements of DMS flux from 10 recent cruises, with a root mean square difference of 3.1 lmol m22 day21. In a sensitivity analysis, we varied temperature, salinity, surface wind speed, and aqueous DMS concentration, using fixed global changes as well as CMIP5 model output. The range of DMS flux in future climate scenarios is discussed. The CMIP5 model predicts a reduction in surface wind speed and we estimate that this will decrease the global annual sea-air flux of DMS by 22% over 25 years. Concurrent changes in temperature, salinity, and DMS concentration increase the global flux by much smaller amounts. The net effect of all CMIP5 modelled 25 year predictions was a 19% reduction in global DMS flux. 25 year DMS concentration changes had significant regional effects, some positive (Southern Ocean, North Atlantic, Northwest Pacific) and some negative (isolated regions along the Equator and in the Indian Ocean). Using satellite-detected coverage of coccolithophore blooms, our estimate of their contribution to North Atlantic DMS emissions suggests that the coccolithophores contribute only a small percentage of the North Atlantic annual flux estimate, but may be more important in the summertime and in the northeast Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: Oceanographic fronts are physical interfaces between water masses that differ in properties such as temperature, salinity, turbidity and chl a enrichment. Bio-physical coupling along fronts can lead to the development of pelagic biodiversity hotspots. A diverse range of marine vertebrates have been shown to associate with fronts, using them as foraging and migration habitats. Elucidation of the ecological significance of fronts generates a better understanding of marine ecosystem functioning, conferring opportunities to improve management of anthropogenic activities in the oceans. This study presents novel insight into the oceanographic drivers of habitat use in a population of marine turtles characterised by an oceanic-neritic foraging dichotomy. Using satellite tracking data from adult female loggerhead turtles nesting at Cape Verde (n = 12), we test the hypothesis that oceanic-foraging loggerheads associate with mesocale (10s – to 100s of km) thermal fronts. We use high-resolution (1 km) composite front mapping to characterise frontal activity in the Canary Current Large Marine Ecosystem (LME) over 2 temporal scales: (1) seasonal front frequency and (2) 7-day front metrics. Our use-availability analysis indicates that oceanic loggerheads show a preference for the highly productive upwelling region between Cape Verde and mainland Africa, an area of intense frontal activity. Within the upwelling region, turtles appear to forage epipelagically around mesoscale thermal fronts, exploiting profitable foraging opportunities resulting from physical aggregation of prey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current global inventories of ammonia emissions identify the ocean as the largest natural source. This source depends on seawater pH, temperature, and the concentration of total seawater ammonia (NHx(sw)), which reflects a balance between remineralization of organic matter, uptake by plankton, and nitrification. Here we compare [NHx(sw)] from two global ocean biogeochemical models (BEC and COBALT) against extensive ocean observations. Simulated [NHx(sw)] are generally biased high. Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed ranges. The resulting global ocean emissions is 2.5 TgN a−1, much lower than current literature values (7–23 TgN a−1), including the widely used Global Emissions InitiAtive (GEIA) inventory (8 TgN a−1). Such a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over most of the ocean in the Northern Hemisphere. Ammonia emitted from oceanic sources is insufficient to neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean emission of ammonia in the range 2–5 TgN a−1, comparable in magnitude to other natural sources from open fires and soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope (13C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oceanic Indian Ocean zooplankton species and their distributions have been well described, but the zooplankton of coastal regions, particularly around the oceanic islands, has not been well researched, either taxonomically or experimentally. The environment of the Mascarene region in the southwestern Indian Ocean and zooplankton research that has been carried out there is detailed, along with gaps in our knowledge. Suggestions are given for future research, particularly on the zooplankton species adapted to live in the fluctuating environment of inshore waters, including studies on taxonomy and biodiversity, life cycles, dispersion and genetics. Problems of carrying out taxonomic research are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used Satellite Relay Data Loggers to obtain the first dive profiles for critically endangered leatherback turtles outside the nesting season. As individuals moved from the Caribbean out into the Atlantic, key aspects of their diving behaviour changed markedly, in line with theoretical predictions for how dive duration should vary with foraging success. In particular, in the Atlantic, where foraging success is expected to be higher, dives became much longer than in the Caribbean. The deepest-ever dive profile recorded for a reptile was obtained in the oceanic Atlantic, with a 54-min dive to 626 m on 26 August 2002. However, dives were typically much shallower (generally