988 resultados para object classification
Resumo:
A new family of neural network architectures is presented. This family of architectures solves the problem of constructing and training minimal neural network classification expert systems by using switching theory. The primary insight that leads to the use of switching theory is that the problem of minimizing the number of rules and the number of IF statements (antecedents) per rule in a neural network expert system can be recast into the problem of minimizing the number of digital gates and the number of connections between digital gates in a Very Large Scale Integrated (VLSI) circuit. The rules that the neural network generates to perform a task are readily extractable from the network's weights and topology. Analysis and simulations on the Mushroom database illustrate the system's performance.
Resumo:
In this work, we investigate tennis stroke recognition using a single inertial measuring unit attached to a player’s forearm during a competitive match. This paper evaluates the best approach for stroke detection using either accelerometers, gyroscopes or magnetometers, which are embedded into the inertial measuring unit. This work concludes what is the optimal training data set for stroke classification and proves that classifiers can perform well when tested on players who were not used to train the classifier. This work provides a significant step forward for our overall goal, which is to develop next generation sports coaching tools using both inertial and visual sensors in an instrumented indoor sporting environment.
Resumo:
As a by-product of the ‘information revolution’ which is currently unfolding, lifetimes of man (and indeed computer) hours are being allocated for the automated and intelligent interpretation of data. This is particularly true in medical and clinical settings, where research into machine-assisted diagnosis of physiological conditions gains momentum daily. Of the conditions which have been addressed, however, automated classification of allergy has not been investigated, even though the numbers of allergic persons are rising, and undiagnosed allergies are most likely to elicit fatal consequences. On the basis of the observations of allergists who conduct oral food challenges (OFCs), activity-based analyses of allergy tests were performed. Algorithms were investigated and validated by a pilot study which verified that accelerometer-based inquiry of human movements is particularly well-suited for objective appraisal of activity. However, when these analyses were applied to OFCs, accelerometer-based investigations were found to provide very poor separation between allergic and non-allergic persons, and it was concluded that the avenues explored in this thesis are inadequate for the classification of allergy. Heart rate variability (HRV) analysis is known to provide very significant diagnostic information for many conditions. Owing to this, electrocardiograms (ECGs) were recorded during OFCs for the purpose of assessing the effect that allergy induces on HRV features. It was found that with appropriate analysis, excellent separation between allergic and nonallergic subjects can be obtained. These results were, however, obtained with manual QRS annotations, and these are not a viable methodology for real-time diagnostic applications. Even so, this was the first work which has categorically correlated changes in HRV features to the onset of allergic events, and manual annotations yield undeniable affirmation of this. Fostered by the successful results which were obtained with manual classifications, automatic QRS detection algorithms were investigated to facilitate the fully automated classification of allergy. The results which were obtained by this process are very promising. Most importantly, the work that is presented in this thesis did not obtain any false positive classifications. This is a most desirable result for OFC classification, as it allows complete confidence to be attributed to classifications of allergy. Furthermore, these results could be particularly advantageous in clinical settings, as machine-based classification can detect the onset of allergy which can allow for early termination of OFCs. Consequently, machine-based monitoring of OFCs has in this work been shown to possess the capacity to significantly and safely advance the current state of clinical art of allergy diagnosis
Resumo:
The electroencephalogram (EEG) is an important noninvasive tool used in the neonatal intensive care unit (NICU) for the neurologic evaluation of the sick newborn infant. It provides an excellent assessment of at-risk newborns and formulates a prognosis for long-term neurologic outcome.The automated analysis of neonatal EEG data in the NICU can provide valuable information to the clinician facilitating medical intervention. The aim of this thesis is to develop a system for automatic classification of neonatal EEG which can be mainly divided into two parts: (1) classification of neonatal EEG seizure from nonseizure, and (2) classifying neonatal background EEG into several grades based on the severity of the injury using atomic decomposition. Atomic decomposition techniques use redundant time-frequency dictionaries for sparse signal representations or approximations. The first novel contribution of this thesis is the development of a novel time-frequency dictionary coherent with the neonatal EEG seizure states. This dictionary was able to track the time-varying nature of the EEG signal. It was shown that by using atomic decomposition and the proposed novel dictionary, the neonatal EEG transition from nonseizure to seizure states could be detected efficiently. The second novel contribution of this thesis is the development of a neonatal seizure detection algorithm using several time-frequency features from the proposed novel dictionary. It was shown that the time-frequency features obtained from the atoms in the novel dictionary improved the seizure detection accuracy when compared to that obtained from the raw EEG signal. With the assistance of a supervised multiclass SVM classifier and several timefrequency features, several methods to automatically grade EEG were explored. In summary, the novel techniques proposed in this thesis contribute to the application of advanced signal processing techniques for automatic assessment of neonatal EEG recordings.
Resumo:
In this paper, we propose generalized sampling approaches for measuring a multi-dimensional object using a compact compound-eye imaging system called thin observation module by bound optics (TOMBO). This paper shows the proposed system model, physical examples, and simulations to verify TOMBO imaging using generalized sampling. In the system, an object is modulated and multiplied by a weight distribution with physical coding, and the coded optical signal is integrated on to a detector array. A numerical estimation algorithm employing a sparsity constraint is used for object reconstruction.
Resumo:
The ability to isolate a single sound source among concurrent sources and reverberant energy is necessary for understanding the auditory world. The precedence effect describes a related experimental finding, that when presented with identical sounds from two locations with a short onset asynchrony (on the order of milliseconds), listeners report a single source with a location dominated by the lead sound. Single-cell recordings in multiple animal models have indicated that there are low-level mechanisms that may contribute to the precedence effect, yet psychophysical studies in humans have provided evidence that top-down cognitive processes have a great deal of influence on the perception of simulated echoes. In the present study, event-related potentials evoked by click pairs at and around listeners' echo thresholds indicate that perception of the lead and lag sound as individual sources elicits a negativity between 100 and 250 msec, previously termed the object-related negativity (ORN). Even for physically identical stimuli, the ORN is evident when listeners report hearing, as compared with not hearing, a second sound source. These results define a neural mechanism related to the conscious perception of multiple auditory objects.
Resumo:
Gemstone Team Vision
Resumo:
Our ability to track an object as the same persisting entity over time and motion may primarily rely on spatiotemporal representations which encode some, but not all, of an object's features. Previous researchers using the 'object reviewing' paradigm have demonstrated that such representations can store featural information of well-learned stimuli such as letters and words at a highly abstract level. However, it is unknown whether these representations can also store purely episodic information (i.e. information obtained from a single, novel encounter) that does not correspond to pre-existing type-representations in long-term memory. Here, in an object-reviewing experiment with novel face images as stimuli, observers still produced reliable object-specific preview benefits in dynamic displays: a preview of a novel face on a specific object speeded the recognition of that particular face at a later point when it appeared again on the same object compared to when it reappeared on a different object (beyond display-wide priming), even when all objects moved to new positions in the intervening delay. This case study demonstrates that the mid-level visual representations which keep track of persisting identity over time--e.g. 'object files', in one popular framework can store not only abstract types from long-term memory, but also specific tokens from online visual experience.
Resumo:
Gliomagenesis is driven by a complex network of genetic alterations and while the glioma genome has been a focus of investigation for many years; critical gaps in our knowledge of this disease remain. The identification of novel molecular biomarkers remains a focus of the greater cancer community as a method to improve the consistency and accuracy of pathological diagnosis. In addition, novel molecular biomarkers are drastically needed for the identification of targets that may ultimately result in novel therapeutics aimed at improving glioma treatment. Through the identification of new biomarkers, laboratories will focus future studies on the molecular mechanisms that underlie glioma development. Here, we report a series of genomic analyses identifying novel molecular biomarkers in multiple histopathological subtypes of glioma and refine the classification of malignant gliomas. We have completed a large scale analysis of the WHO grade II-III astrocytoma exome and report frequent mutations in the chromatin modifier, alpha thalassemia mental retardation x-linked (
Resumo:
The correlation between diet and dental topography is of importance to paleontologists seeking to diagnose ecological adaptations in extinct taxa. Although the subject is well represented in the literature, few studies directly compare methods or evaluate dietary signals conveyed by both upper and lower molars. Here, we address this gap in our knowledge by comparing the efficacy of three measures of functional morphology for classifying an ecologically diverse sample of thirteen medium- to large-bodied platyrrhines by diet category (e.g., folivore, frugivore, hard object feeder). We used Shearing Quotient (SQ), an index derived from linear measurements of molar cutting edges and two indices of crown surface topography, Occlusal Relief (OR) and Relief Index (RFI). Using SQ, OR, and RFI, individuals were then classified by dietary category using Discriminate Function Analysis. Both upper and lower molar variables produce high classification rates in assigning individuals to diet categories, but lower molars are consistently more successful. SQs yield the highest classification rates. RFI and OR generally perform above chance. Upper molar RFI has a success rate below the level of chance. Adding molar length enhances the discriminatory power for all variables. We conclude that upper molar SQs are useful for dietary reconstruction, especially when combined with body size information. Additionally, we find that among our sample of platyrrhines, SQ remains the strongest predictor of diet, while RFI is less useful at signaling dietary differences in absence of body size information. The study demonstrates new ways for inferring the diets of extinct platyrrhine primates when both upper and lower molars are available, or, for taxa known only from upper molars. The techniques are useful in reconstructing diet in stem representatives of anthropoid clade, who share key aspects of molar morphology with extant platyrrhines.
Resumo:
A regularized algorithm for the recovery of band-limited signals from noisy data is described. The regularization is characterized by a single parameter. Iterative and non-iterative implementations of the algorithm are shown to have useful properties, the former offering the advantage of flexibility and the latter a potential for rapid data processing. Comparative results, using experimental data obtained in laser anemometry studies with a photon correlator, are presented both with and without regularization. © 1983 Taylor & Francis Ltd.
Resumo:
An analysis is carried out, using the prolate spheroidal wave functions, of certain regularized iterative and noniterative methods previously proposed for the achievement of object restoration (or, equivalently, spectral extrapolation) from noisy image data. The ill-posedness inherent in the problem is treated by means of a regularization parameter, and the analysis shows explicitly how the deleterious effects of the noise are then contained. The error in the object estimate is also assessed, and it is shown that the optimal choice for the regularization parameter depends on the signal-to-noise ratio. Numerical examples are used to demonstrate the performance of both unregularized and regularized procedures and also to show how, in the unregularized case, artefacts can be generated from pure noise. Finally, the relative error in the estimate is calculated as a function of the degree of superresolution demanded for reconstruction problems characterized by low space–bandwidth products.
Resumo:
In this paper we consider the problems of object restoration and image extrapolation, according to the regularization theory of improperly posed problems. In order to take into account the stochastic nature of the noise and to introduce the main concepts of information theory, great attention is devoted to the probabilistic methods of regularization. The kind of the restored continuity is investigated in detail; in particular we prove that, while the image extrapolation presents a Hölder type stability, the object restoration has only a logarithmic continuity. © 1979 American Institute of Physics.
Resumo:
info:eu-repo/semantics/published
Resumo:
We propose a new formulation of Miller's regularization theory, which is particularly suitable for object restoration problems. By means of simple geometrical arguments, we obtain upper and lower bounds for the errors on regularized solutions. This leads to distinguish between ' Holder continuity ' which is quite good for practical computations and ` logarithmic continuity ' which is very poor. However, in the latter case, one can reconstruct local weighted averages of the solution. This procedure allows for precise valuations of the resolution attainable in a given problem. Numerical computations, made for object restoration beyond the diffraction limit in Fourier optics, show that, when logarithmic continuity holds, the resolution is practically independent of the data noise level. © 1980 Taylor & Francis Group, LLC.