994 resultados para nickel catalyst
Resumo:
The effect of the amount of the catalyst FeCl3, used during the direct oxidation polymerization, on the structure and properties of the obtained poly(3-dodecylthiophene) (P3DDT) was investigated in this paper. Such measurements as gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectroscopy, thermal analysis, X-ray diffraction, infrared spectroscopy (FTIR) and ultraviolet-visible (W-vis) spectroscopy were applied. It is found that a suitable addition of FeCl3 can contribute to generate a P3DDT with greater percentage of head-to-tail head-to-tail (HT-HT) linkages, which are generally favored. The reduction of the other linkage defects helps to lengthen conjugation length, thus leading to more orderly chain packing. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The catalytic behaviors of a novel liquid acid catalyst (composed of heteropolyacid and acetic acid) for alkylation of isobutane with butene was investigated. As a solvent acetic acid had a synergistic effect. It enhanced the acid strength of HPA and its stability. The conditions for the formation of the catalytically active phase were studied systematically. The content of crystal water of HPA and the quantity of solvent affect the formation of active phase and the catalytic activity. Catalytically active phase consists of HPA, acetic acid and hydrocarbon produced from the reaction, as well as traces of water from the crystal water of HPA. This catalyst system is comparable to the sulfuric acid in catalytic activity.
Resumo:
A novel liquid acid catalyst, composed of heteropolyacid and acetic acid for the alkylation of isobutane with butenes is reported. The conditions for the formation of catalytic active phase as well as its catalytic behaviors in alkylation of isobutane with butenes have been studied. It was found that acetic acid, as a solvent, exerts a synergistic effect on the acid strength of heteropolyacid, and the contents of crystal water in HPAs have influence over the formation of active phase and the catalytic activity. This novel catalyst is comparable to the sulfuric acid in catalytic activity.
Resumo:
To obtain a novel support with practical value for metallocene catalyst (eta -C5H5)TiCl3 (CpTiCl3), poly (styrene-co-4-vinylpyridine) /SiO2 nanoscale hybrid material (SrP/SiO2) was firstly produced as support. After pretreatment by methylaluminoxane (MAO), the hybrid materials reacted with CpTiCl3. The results from SAXS, SEM and TEM indicated the morphology and structure of organic/inorganic hybrid materials, and the size of inorganic particle in hybrid was nanoscale. The results from IR and XPS showed that there were two possible cationic active species in the hybrid-supported catalyst, the polymerization results of styrene proved this possibility.
Resumo:
Tridentate ligand[(2,6-ArN=C(Me))(2)C5H3N](Ar=4-allyl-2,6-(i-Pr)(2)C6H3)(4)which contains allyl groups on each aryl ring was ready prepared and reacted with FeCl2. 4H(2)O to give the precatalyst [(2,6-ArN=C(CH3))(2)C5H3N]. FeCl2 (5). Compounds 2-5 were characterized by H-1 NMR, EI-MS,and IR. The complex 5 which was actived by methylaluminoxane(MAO) exhibits high activity for ethylene polymerization [1.9 x 10(6) g pE.(mol Fe . h)(-1) at 0 degreesC]. It was showed that the activity was decreased with increasing temperature and the polymer product was highly linear PE with (M) over bar (eta) varying from 50000 to 260000.
Resumo:
A highly alternative copolymer of carbon dioxide and propylene oxide was obtained using a lanthanide trichloroacetates-based ternary catalyst. The rare-earth compound in the ternary catalyst was critical to dramatically raise the yield and molecular weight of the copolymer in addition to maintaining a high alternating ratio of the copolymer. (C) 2001 John Wiley & Sons, Inc.
Resumo:
The use of functional groups bearing silica/poly(styrene-co-4-vinylpyridine) core-shell particles as a support for a zirconocene catalyst in ethylene polymerization was studied. Several factors affecting the behavior of the supported catalyst and the properties of the resulting polymer, such as time, temperature, Al/N (molar ratio), and Al/Zr (molar ratio), were examined. The conditions of the supported catalyst preparation were more important than those of the ethylene polymerization. The state of the supported catalyst itself played a decisive role in both the catalytic behavior of the supported catalyst and the properties of polyethylene (PE). IR and X-ray photoelectron spectroscopy were used to follow the formation of the supports. The formation of cationic active species is hypothesized, and the performance of the core-shell-particle-supported zirconocene catalyst is discussed as well. The bulk density of the PE formed was higher than that of the polymer obtained from homogeneous and polymer-supported Cp2ZrCl2/methylaluminoxane catalyst systems. (C) 2001 John Wiley & Sons, Inc.
Resumo:
A new polymer-supported metallocene catalyst has been prepared, The polymer-supported metallocene displayed considerably high activity in ethylene polymerization, the highest being 3.62x10(7) gPE/molZr.h, the molecular weight of the polyethylene produced was Mn = 1.29x10(5). about 3-4 times those of corresponding homogeneous zirconocenes. The polymer-supported metallocene keeps the characteristics of homogeneous metallocene catalysts, and offers some features, such as adaptable to gas phase and slurry processes: easy to prepare in low cost: relatively high activity and lower MAO/Zr ratio; lower inorganic residues in the polyolefins as compared to cases of SiO2, Al2O3 or MgCl2; unitary active structure, no complex surface as with SiO2; good control of morphology of the resulting polymer.
Resumo:
Poly(4 - vinylpyridine)/silica( PVP/SiO2) organic - inorganic nanoscale hybrid was prepared using sol - gel method, in which PVP was used as an organic component and TEOS as a SiO2 precusor, This hybrid was used as CpTiCl3 support. The XPS and IR measurements showed that two kinds of catalytic active site were formed through analyzing the interaction mode between support and CpTiCl3. The results of styrene polymerization showed that syndiotactic was the highest at 50 degreesC. The catalytic activity was 1.09 x 10(6) g PS/ (mol Ti . h) at 70 degreesC when n(Al)/n(Ti) = 1500. GPC results showed a bimodal molecular weight distribution.
Resumo:
Graphite powder-supported nickel(II) hexacyanoferrate (NiHCF) was prepared by the in situ chemical deposition method and then dispersed into methyltrimethoxysilane-derived gels to form a conductive composite. The composite was used as electrode material to construct a surface-renewable three-dimensional NiHCF-modified carbon ceramic electrode. Electrochemical behavior of the chemically modified electrode was well characterized using cyclic and square-wave voltammetry. The electrode presented a good electrocatalytic activity toward the oxidization of thiosulfate and thus was used as an amperometric sensor for thiosulfate in the photographic waste effluent. In addition, the electrode exhibited a distinct advantage of surface-renewal by simple mechanical polishing, as well as simple preparation, good chemical and mechanical stability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Well-defined block copolymers of L-lactide-b-epsilon-caprolactone were synthesized by sequential polymerization using a rare earth complex, Y(CF3COO)(3)/Al(iso-Bu)(3), as catalyst system. The compositions of the block copolymers could be adjusted by manipulating the feeding ratio of comonomers. The characterizations by GPC, H-1 NMR, C-13 NMR, and DSC displayed that the block copolymer, poly(epsilon-caprolactone-b-L-lactide) [P(CL-b-LLA)], had a narrow molecular weight distribution and well-controlled sequences without random placement.
Resumo:
A new nickel (II)-cyanometallates modified on glassy carbon electrode was prepared by a new method and studied by cyclic voltammetry and in situ Fourier transform infrared (FTIR) spectroelectrochemistry. It was found that the NiHCF film existed in two forms: Ni2Fe(II)-(CN)(6) and M2NiFe(II)(CN)(6), Fe(CN)(3)(6-) codeposited in the NiHCF film existing in free cation or bridged-bond state depended on the property of the cations in electrolyte: in NaCl and LiCl solution, it is in bridges-bonded, but in HCl and KCl, it is free.
Resumo:
The catalyst system neodymium phosphonate Nd(P-507)(3)/H2O/Al(i-Bu)(3) for the polymerization of styrene was examined. Effects of the addition order of the catalyst components, catalyst aging time and aging temperature on the catalyst activity and the polymer characteristics were investigated. The catalyst activity for isospecific polymerization of styrene increases with aging time and reaches the maximum with a catalyst aged for 45 min at 70 degrees C. The aging time that the catalyst needs to reach the highest activity for isospecific polymerization decreases with increasing aging temperature. The preformed catalyst and the in situ catalyst were compared with respect to the kinetic behavior of the styrene polymerization and the polymer characteristics.
Resumo:
The use of crosslinked poly(styrene-co-4-vinylpyridine) having functional groups as the support for zirconocene catalysts in ethylene polymerization was studied. Several factors affecting the activity of the catalysts were examined. Conditions like time, temperature, Al/N (molar ratio), Al/Zr (molar ratio), and the mode of feeding were found having no significant influence on the activity of the catalysts, while the state of the supports had a great effect on the catalytic behavior. The activity of the catalysts sharply increased with either the degree of crosslinking or the content of 4-vinylpyridine in the support. Via aluminum compounds, AlR3 or methylaluminoxane (MAO), zirconocene was attached on the surface of the support. IR spectra showed an intensified and shifted absorption bands of C-N in the pyridine ring, and a new absorption band appeared at about 730 cm(-1) indicating a stable bond Al-N formed in the polymer-supported catalysts. The formation of cationic active centers was hypothesized and the performance of the polymer-supported zirconocene was discussed as well. (C) 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 37-46, 1999.
Resumo:
In this paper, a series of Sr1-xLaxNiAl11O19 catalysts were synthesized and their chemical and physical properties were investigated by XRD, UV-DRS, H-2-O-2 titration, TPR and Py-IR techniques. The experimental results show that the Sr1-xLaxNiAl11O19 catalysts have a magnetoplumbite structure and Ni ion is shared between tetrahedral and octahedral sites of the spinel blocks, and the amount of nickel ions in the tetrahedral environment increases with the increase of x value in Sr1-xLaxNiAl11O19. The TPR study revealed that the reducibility of the series of the catalysts depends strongly on the substitution value x, that is, a low temperature peak appears for samples without substitution, in case of samples with x = 1 high temperature peak appears, and for samples with 0