900 resultados para neurogenic bladder dysfunction
Resumo:
Primary aim of this study was to evaluate the effect of our therapeutical management in patients with painful bladder syndrome (PBS)/interstitial cystitis (IC) on sexual function, quality of life and bladder symptoms using validated tools prospectively
Developmental Brain Dysfunction: Revival and Expansion of Old Concepts Based on New Genetic Evidence
Resumo:
Neurodevelopmental disorders can be caused by many different genetic abnormalities that are individually rare but collectively common. Specific genetic causes, including certain copy number variants and single-gene mutations, are shared among disorders that are thought to be clinically distinct. This evidence of variability in the clinical manifestations of individual genetic variants and sharing of genetic causes among clinically distinct brain disorders is consistent with the concept of developmental brain dysfunction, a term we use to describe the abnormal brain function underlying a group of neurodevelopmental and neuropsychiatric disorders and to encompass a subset of various clinical diagnoses. Although many pathogenic genetic variants are currently thought to be variably penetrant, we hypothesise that when disorders encompassed by developmental brain dysfunction are considered as a group, the penetrance will approach 100%. The penetrance is also predicted to approach 100% when the phenotype being considered is a specific trait, such as intelligence or autistic-like social impairment, and the trait could be assessed using a continuous, quantitative measure to compare probands with non-carrier family members rather than a qualitative, dichotomous trait and comparing probands with the healthy population. Copyright 2013 Elsevier Ltd. All rights reserved.
Resumo:
Chronic mountain sickness (CMS) is a major public health problem characterized by exaggerated hypoxemia and erythrocytosis. In more advanced stages, patients with CMS often present with functional and structural changes of the pulmonary circulation, but there is little information on the systemic circulation. In patients with diseases associated with chronic hypoxemia at low altitude, systemic vascular function is altered. We hypothesized that patients with CMS have systemic vascular dysfunction that may predispose them to increased systemic cardiovascular morbidity.
Resumo:
Diagnosis, staging, and treatment monitoring are still suboptimal for most genitourinary tumours. Diffusion-weighted magnetic resonance imaging (DW-MRI) has already shown promise as a noninvasive imaging modality in the early detection of microstructural and functional changes in several pathologies of various organs.
Resumo:
Nonmotor disturbances (NMDs) affect most patients with Parkinson's disease (PD) and often have a profound impact on their quality of life. NMDs such as depression, anxiety, fatigue, REM sleep behavior disorder, constipation, delayed gastric emptying, altered olfaction and pain can precede the onset of motor symptoms. Other NMDs, including hallucinations, dementia, excessive daytime sleepiness, insomnia, orthostatic hypotension and bladder disturbances, typically appear later in the course of PD. For most NMDs of PD, nondopaminergic and non-nigrostriatal mechanisms (e.g. neurodegeneration of other transmitter systems in the cortex and brainstem, side effects of medications, genetic and psychosocial factors) are considered more relevant than the 'classical' dopaminergic-nigrostriatal dysfunction. The recognition of NMDs requires a high degree of clinical suspicion, the use of specific questionnaires and ancillary tests. Pharmacological and nonpharmacological approaches can be effective, but for most forms of treatment of NMDs, the scientific evidence is limited.
Resumo:
Andersen-Tawil syndrome (ATS) due to Kir2.1mutations typically manifests as periodic paralysis, cardiac arrhythmias and developmental abnormalities but is often difficult to diagnose clinically. This study was undertaken to determine whether sarcolemmal dysfunction could be identified with muscle velocity recovery cycles (MVRCs).
Resumo:
Congenital peripheral nerve hyperexcitability (PNH) is usually associated with impaired function of voltage-gated K(+) channels (VGKCs) in neuromyotonia and demyelination in peripheral neuropathies. Schwartz-Jampel syndrome (SJS) is a form of PNH that is due to hypomorphic mutations of perlecan, the major proteoglycan of basement membranes. Schwann cell basement membrane and its cell receptors are critical for the myelination and organization of the nodes of Ranvier. We therefore studied a mouse model of SJS to determine whether a role for perlecan in these functions could account for PNH when perlecan is lacking. We revealed a role for perlecan in the longitudinal elongation and organization of myelinating Schwann cells because perlecan-deficient mice had shorter internodes, more numerous Schmidt-Lanterman incisures, and increased amounts of internodal fast VGKCs. Perlecan-deficient mice did not display demyelination events along the nerve trunk but developed dysmyelination of the preterminal segment associated with denervation processes at the neuromuscular junction. Investigating the excitability properties of the peripheral nerve suggested a persistent axonal depolarization during nerve firing in vitro, most likely due to defective K(+) homeostasis, and excluded the nerve trunk as the original site for PNH. Altogether, our data shed light on perlecan function by revealing critical roles in Schwann cell physiology and suggest that PNH in SJS originates distally from synergistic actions of peripheral nerve and neuromuscular junction changes.
Resumo:
It is known that hypertension is associated with endothelial dysfunction and that Angiotensin II (Ang II) is a key player in the pathogenesis of hypertension. We aimed to elucidate whether endothelial dysfunction is a specific feature of Ang II-mediated hypertension or a common finding of hypertension, independently of underlying etiology. We studied endothelial-dependent vasorelaxation in precapillary resistance arterioles and in various large-caliber conductance arteries in wild-type mice with Ang II-dependent hypertension (2-kidney 1-clip (2K1C) model) or Ang II-independent (volume overload) hypertension (1-kidney 1-clip model (1K1C)). Normotensive sham mice were used as controls. Aortic mechanical properties were also evaluated. Intravital microscopy of precapillary arterioles revealed a significantly impaired endothelium-dependent vasorelaxation in 2K1C mice compared with sham mice, as quantified by the ratio of acetylcholine (ACh)-induced over S-nitroso-N-acetyl-D,L-penicillamine (SNAP)-induced vasorelaxation (2K1C: 0.49±0.12 vs. sham: 0.87±0.11, P=0.018). In contrast, the ACh/SNAP ratio in volume-overload hypertension 1K1C mice was not significantly different from sham mice, indicating no specific endothelial dysfunction (1K1C: 0.77±0.27 vs. sham: 0.87±0.11, P=0.138). Mechanical aortic wall properties and endothelium-dependent vasorelaxation, assessed ex vivo in rings of large-caliber conductance (abdominal and thoracic aorta, carotid and femoral arteries), were not different between 2K1C, 1K1C and sham mice. Endothelial dysfunction is an early feature of Ang II- but not volume-overload-mediated hypertension. This occurs exclusively at the level of precapillary arterioles and not in conduit arteries. Our findings, if confirmed in clinical studies, will provide a better understanding of the pathophysiological mechanisms of hypertension.
Resumo:
Lymph node metastases influence prognosis and outcome in patients with bladder and prostate cancer. Cross sectional imaging criteria are limited in detecting metastases in normal sized lymph nodes. This prospective study assessed the diagnostic accuracy of ultrasmall superparamagnetic particles of iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI) for the detection of metastases in normal sized lymph nodes using extended pelvic lymph node dissection (ePLND) and histopathology as the reference standard.
Resumo:
The aim of this study was to evaluate microdialysis of the rectus abdominis muscle (RAM) for early detection of subclinical organ dysfunction in a porcine model of critical intra-abdominal hypertension (IAH). Microdialysis catheters for analyses of lactate, pyruvate, and glycerol levels were placed in cervical muscles (control), gastric and jejunal wall, liver, kidney, and RAM of 30 anesthetized mechanically ventilated pigs. Catheters for venous lactate and interleukin 6 samples were placed in the jugular, portal, and femoral vein. Intra-abdominal pressure (IAP) was increased to 20 mmHg (IAH20 group, n = 10) and 30 mmHg (IAH30, n = 10) for 6 h by controlled CO2 insufflation, whereas sham animals (n = 10) exhibited a physiological IAP. In contrast to 20 mmHg, an IAH of 30 mmHg induced pathophysiological alterations consistent with an abdominal compartment syndrome. Microdialysis showed significant increase in the lactate/pyruvate ratio in the RAM of the IAH20 group after 6 h. In the IAH30 group, the strongest increase in lactate/pyruvate ratio was detected in the RAM and less pronounced in the liver and gastric wall. Glycerol increased in the RAM only. After 6 h, there was a significant increase in venous interleukin 6 of the IAH30 group compared with baseline. Venous lactate was increased compared with baseline and shams in the femoral vein of the IAH30 group only. Intra-abdominal pressure-induced ischemic metabolic changes are detected more rapidly and pronounced by microdialysis of the RAM when compared with intra-abdominal organs. Thus, the RAM represents an important and easily accessible site for the early detection of subclinical organ dysfunction during critical IAH.
Resumo:
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset neurological disease resulting from mutations in the SACS gene encoding sacsin, a 4,579-aa protein of unknown function. Originally identified as a founder disease in Québec, ARSACS is now recognized worldwide. Prominent features include pyramidal spasticity and cerebellar ataxia, but the underlying pathology and pathophysiological mechanisms are unknown. We have generated an animal model for ARSACS, sacsin knockout mice, that display age-dependent neurodegeneration of cerebellar Purkinje cells. To explore the pathophysiological basis for this observation, we examined the cell biological properties of sacsin. We show that sacsin localizes to mitochondria in non-neuronal cells and primary neurons and that it interacts with dynamin-related protein 1, which participates in mitochondrial fission. Fibroblasts from ARSACS patients show a hyperfused mitochondrial network, consistent with defects in mitochondrial fission. Sacsin knockdown leads to an overly interconnected and functionally impaired mitochondrial network, and mitochondria accumulate in the soma and proximal dendrites of sacsin knockdown neurons. Disruption of mitochondrial transport into dendrites has been shown to lead to abnormal dendritic morphology, and we observe striking alterations in the organization of dendritic fields in the cerebellum of knockout mice that precedes Purkinje cell death. Our data identifies mitochondrial dysfunction/mislocalization as the likely cellular basis for ARSACS and indicates a role for sacsin in regulation of mitochondrial dynamics.