947 resultados para multiply charged ions
Resumo:
The RKKEE cluster of charged residues located within the cytoplasmic helix of the bacterial mechanosensitive channel, MscL, is essential for the channel function. The structure of MscL determined by x-ray crystallography and electron paramagnetic resonance spectroscopy has revealed discrepancies toward the C-terminus suggesting that the structure of the C-terminal helical bundle differs depending on the pH of the cytoplasm. In this study we examined the effect of pH as well as charge reversal and residue substitution within the RKKEE cluster on the mechanosensitivity of Escherichia coli MscL reconstituted into liposomes using the patch-clamp technique. Protonation of either positively or negatively charged residues within the cluster, achieved by changing the experimental pH or residue substitution within the RKKEE cluster, significantly increased the free energy of activation for the MscL channel due to an increase in activation pressure. Our data suggest that the orientation of the C-terminal helices relative to the aqueous medium is pH dependent, indicating that the RKKEE cluster functions as a proton sensor by adjusting the channel sensitivity to membrane tension in a pH-dependent fashion. A possible implication of our results for the physiology of bacterial cells is briefly discussed.
Resumo:
One hundred sixty-eight multiply substituted 1,4-benzodiazepines have been prepared by a five-step solid-phase combinatorial approach using syn-phase crowns as a solid support and a hydroxymethyl-phenoxy-acetamido linkage (Wang linker). The substituents of the 1,4-benzodiazepine scaffold have been varied in the -3, -5, -7, and 8-positions and the combinatorial library was evaluated in a cholecystokinin (CCK) radioligand binding assay. 3-Alkylated 1,4-benzodiazepines with selectivity towards the CCK-B (CCK2) receptor have been optimized on the lipophilic side chain, the ketone moiety, and the stereochemistry at the 3-position. Various novel 3-alkylated compounds were synthesized and [S]3-propyl-5-phenyl-1,4-benzodiazepin-2-one, [S]NV-A, has shown a CCK-B selective binding at about 180 nM. Fifty-eight compounds of this combinatorial library were purified by preparative TLC and 25 compounds were isolated and fully characterized by TLC, IR, APCI-MS, and 1H/13C-NMR spectroscopy.
Resumo:
The levels of Mn, Cu, zn, Mg and Ca were measured in the lichens Xanthoparmelia conspersa (Ach.) Hale and Parmelia glabratula ssp. fuliginosa (Fr. ex Duby): Laund. growing on a steep slate rock surface in south Gwynedd, Wales, UK. The objective was to test the following hypotheses: 1) that foliose lichens growing in a rural environment concentrate metal ions relative to the substratum, 2) that the concentration of metal ions increases significantly with thallus size and 3) that individual ions accumulate preferentially either in the marginal lobes or thallus centre. Mg and Ca were present in rainfall whereas all ions were present in rock surface runoff and in the substratum. Levels of Mn, Mg and Ca were increased in runoff collected from the bottom compared with the top of the rock surface. In P. glabratula ssp. fuliginosa thalli, ions were present as follows, Mg > Ca=Mn=Zn>Cu, and there were no significant differences in thalli collected from the top and bottom of the rock surface. With the exception of Mg and Ca, ion levels in thalli were similar to or less than those in the substratum. The levels of Ca, Cu and Zn were similar in thalli from under 1 to over 4 cm in diameter. However, the level of Mg increased with thallus size in X. conspersa while the level of Mn decreased with thallus size in both species. Ion levels were similar in the marginal lobes and centres of large diameter (over 4 cm) and small diameter (under 2 cm) X. conspersa thalli. With the exception of Mg, there was no evidence for a significant accumulation of ions relative to the substratum or with thallus size. In addition, there was no evidence to suggest preferential accumulation of ions either in the thallus centre or marginal lobes.
Resumo:
Humic substances are the major organic constituents of soils and sediments. They are heterogeneous, polyfunctional, polydisperse, macromolecular and have no accurately known chemical structure. Their interactions with radionuclides are particularly important since they provide leaching mechanisms from disposal sites. The central theme to this research is the interaction of heavy metal actinide analogues with humic materials. Studies described focus on selected aspects of the characteristics and properties of humic substances. Some novel approaches to experiments and data analysis are pursued. Several humic substances are studied; all but one are humic acids, and those used most extensively were obtained commercially. Some routine characterisation techniques are applied to samples in the first instance. Humic substances are coloured, but their ultra-violet and visible absorption spectra are featureless. Yet, they fluoresce over a wide range of wavelengths. Enhanced fluorescence in the presence of luminescent europium(III) ions is explained by energy transfer from irradiated humic acid to the metal ion in a photophysical model. Nuclear magnetic resonance spectroscopy is applied to the study of humic acids and their complexes with heavy metals. Proton and carbon-13 NMR provides some structural and functionality information; Paramagnetic lanthanide ions affect these spectra. Some heavy metals are studied as NMR nuclei, but measurements are restricted by their sensitivity. A humic acid is fractionated yielding a broad molecular weight distribution. Electrophoretic mobilities and particle radii determined by Laser Doppler Electrophoretic Light Scattering are sensitive to the conditions of the supporting media, and the concentration and particle size distribution of humic substances. In potentiometric titrations of humate dispersions, the organic matter responds slowly and the mineral acid addition is buffered. Proton concentration data is modelled and a mechanism is proposed involving two key stages, both resulting in proton release after some conformational changes.
Resumo:
A review of the general chromatographic theory and of continuous chromatographic techniques has been carried out. Three methods of inversion of sucrose to glucose and fructose in beet molasses were explored. These methods were the inversion of sucrose using the enzyme invertase, by the use of hydrochloric acid and the use of the resin Amberlite IR118 in the H+ form. The preferred method on economic and purity considerations was by the use of the enzyme invertase. The continuous chromatographic separation of inverted beet molasses resulting in a fructose rich product and a product containing glucose and other non-sugars was carried out using a semi-continuous counter-current chromatographic refiner (SCCR6), consisting of ten 10.8cm x 75cm long stainless steel columns packed with a calcium charged 8% cross-linked polystyrene resin Zerolit SRC 14. Based on the literature this is the first time such a continuous separation has been attempted. It was found that the cations present in beet molasses displaced the calcium ions from the resin resulting in poor separation of the glucose and fructose. Three methods of maintaining the calcium form of the resin during the continuous operation of the equipment were established. Passing a solution of calcium nitrate through the purge column for half a switch period was found to be most effective as there was no contamination of the main fructose rich product and the product concentrations were increased by 50%. When a 53% total solids (53 Brix) molasses feedstock was used, the throughput was 34.13kg sugar solids per m3 of resin per hour. Product purities of 97% fructose in fructose rich (FRP) and 96% glucose in the glucose rich (GRP) products were obtained with product concentrations of 10.93 %w/w for the FRP and 10.07 %w/w for the GRP. The effects of flowrates, temperature and background sugar concentration on the distribution coefficients of fructose, glucose, betaine and an ionic component of beet molasses were evaluated and general relationships derived. The computer simulation of inverted beet molasses separations on an SCCR system has been carried out successfully.
Resumo:
The deposition and properties of electroless nickel composite coatings containing graphite, PTFE and chromium were investigated. Solutions were developed for the codeposition of graphite and chromium with electroless nickel. Solutions for the deposition of graphite contained heavy metal ions for stability, with non-ionic and anionic surfactants to provide wetting and dispersion of the particles. Stability for the codeposition of chromium particles was achieved by oxidation of the chromium. Thin oxide layers of 200 nm thick prevented initiation of the electroless reaction onto the chromium. A mechanism for the formation of electroless composite coatings was considered based on the physical adsorption of particles and as a function of the adsorption of charged surfactants and metal cations from solution. The influence of variables such as particle concentration in solution, particle size, temperature, pH, and agitation on the volume percentage of particles codeposited was studied. The volume percentage of graphite codeposited was found to increase with concentration in solution and playing rate. An increase in particle size and agitation reduced the volume percentage codeposited. The hardness of nickel-graphite deposits was found to decrease with graphite content in the as-deposited and heat treated condition. The frictional and wear properties of electroless nickel-graphite were studied and compared to those of electroless nickel-PTFE. The self-lubricating nature of both coatings was found to be dependent on the ratio of coated area to uncoated area, the size and content of lubricating material in the deposit, and the load between contacting surfaces. The mechanism of self-lubrication was considered, concluding that graphite only produced an initial lubricating surface due to the orientation of flakes, unlike PTFE, which produced true self-lubrication throughout the coating life. Heat treatment of electroless nickel chromium deposits at 850oC for 8 and 16 hours produced nickel-iron-chromium alloy deposits with a phosphorus rich surface of high hardness. Coefficients of friction and wear rates were intially moderate for the phosphorus rich layer but increased for the nickel-iron-chromium region of the coating.
Resumo:
The effect of substituents on the value of the oxidation potential of quinones is reviewed and attempts to prepare substituted diphenoquinones with high oxidation potentials are reported. Attempts to characterise the mechanism of addition and substitution in diphenoquinones by identifying the products of the Thiele acetylation of diphenoquinone are reported. The reaction proved most efficient when the incoming acetylinium ion is directed by substituents in the diphenoquinone. A 1,8-addition to diphenoquinone is reported and characterised by isolating the products of the reaction between acetyl chloride and diphenoquinone, with perchloric acid as catalyst. The alternating linewidth effects observed in e.s.r.spectra are discussed and applied to account for such effects observed in the e.s.r.spectra of diphenosemiquinone anion and cation radicals. The spectra are analysed and the intramolecular processes producing these effects are discussed. A dianion diradical where intramolecular rotation about the 1 - 1' bond is restricted is produced by the oxidation of 2,2' ,4,4' -tetra hydroxybiphenyl. Previous studies of diphenosemiquinone anions are reviewed and alkylated diphenosemiquinone anion are produced by the reduction of the parent quinone with potassium hydroxide solution, the resulting radical being stabilised by the presence of pyridine. A qualitative interpretation of the solvent-ion effect in alkylated diphenosemiquinone anions is given. Diphanosemiquinone cation radicals are reviewed and previous studies are re-examined.