824 resultados para multiple objective analysis
Resumo:
Safety on public transport is a major concern for the relevant authorities. We
address this issue by proposing an automated surveillance platform which combines data from video, infrared and pressure sensors. Data homogenisation and integration is achieved by a distributed architecture based on communication middleware that resolves interconnection issues, thereby enabling data modelling. A common-sense knowledge base models and encodes knowledge about public-transport platforms and the actions and activities of passengers. Trajectory data from passengers is modelled as a time-series of human activities. Common-sense knowledge and rules are then applied to detect inconsistencies or errors in the data interpretation. Lastly, the rationality that characterises human behaviour is also captured here through a bottom-up Hierarchical Task Network planner that, along with common-sense, corrects misinterpretations to explain passenger behaviour. The system is validated using a simulated bus saloon scenario as a case-study. Eighteen video sequences were recorded with up to six passengers. Four metrics were used to evaluate performance. The system, with an accuracy greater than 90% for each of the four metrics, was found to outperform a rule-base system and a system containing planning alone.
Resumo:
La spectrométrie de masse mesure la masse des ions selon leur rapport masse sur charge. Cette technique est employée dans plusieurs domaines et peut analyser des mélanges complexes. L’imagerie par spectrométrie de masse (Imaging Mass Spectrometry en anglais, IMS), une branche de la spectrométrie de masse, permet l’analyse des ions sur une surface, tout en conservant l’organisation spatiale des ions détectés. Jusqu’à présent, les échantillons les plus étudiés en IMS sont des sections tissulaires végétales ou animales. Parmi les molécules couramment analysées par l’IMS, les lipides ont suscité beaucoup d'intérêt. Les lipides sont impliqués dans les maladies et le fonctionnement normal des cellules; ils forment la membrane cellulaire et ont plusieurs rôles, comme celui de réguler des événements cellulaires. Considérant l’implication des lipides dans la biologie et la capacité du MALDI IMS à les analyser, nous avons développé des stratégies analytiques pour la manipulation des échantillons et l’analyse de larges ensembles de données lipidiques. La dégradation des lipides est très importante dans l’industrie alimentaire. De la même façon, les lipides des sections tissulaires risquent de se dégrader. Leurs produits de dégradation peuvent donc introduire des artefacts dans l’analyse IMS ainsi que la perte d’espèces lipidiques pouvant nuire à la précision des mesures d’abondance. Puisque les lipides oxydés sont aussi des médiateurs importants dans le développement de plusieurs maladies, leur réelle préservation devient donc critique. Dans les études multi-institutionnelles où les échantillons sont souvent transportés d’un emplacement à l’autre, des protocoles adaptés et validés, et des mesures de dégradation sont nécessaires. Nos principaux résultats sont les suivants : un accroissement en fonction du temps des phospholipides oxydés et des lysophospholipides dans des conditions ambiantes, une diminution de la présence des lipides ayant des acides gras insaturés et un effet inhibitoire sur ses phénomènes de la conservation des sections au froid sous N2. A température et atmosphère ambiantes, les phospholipides sont oxydés sur une échelle de temps typique d’une préparation IMS normale (~30 minutes). Les phospholipides sont aussi décomposés en lysophospholipides sur une échelle de temps de plusieurs jours. La validation d’une méthode de manipulation d’échantillon est d’autant plus importante lorsqu’il s’agit d’analyser un plus grand nombre d’échantillons. L’athérosclérose est une maladie cardiovasculaire induite par l’accumulation de matériel cellulaire sur la paroi artérielle. Puisque l’athérosclérose est un phénomène en trois dimension (3D), l'IMS 3D en série devient donc utile, d'une part, car elle a la capacité à localiser les molécules sur la longueur totale d’une plaque athéromateuse et, d'autre part, car elle peut identifier des mécanismes moléculaires du développement ou de la rupture des plaques. l'IMS 3D en série fait face à certains défis spécifiques, dont beaucoup se rapportent simplement à la reconstruction en 3D et à l’interprétation de la reconstruction moléculaire en temps réel. En tenant compte de ces objectifs et en utilisant l’IMS des lipides pour l’étude des plaques d’athérosclérose d’une carotide humaine et d’un modèle murin d’athérosclérose, nous avons élaboré des méthodes «open-source» pour la reconstruction des données de l’IMS en 3D. Notre méthodologie fournit un moyen d’obtenir des visualisations de haute qualité et démontre une stratégie pour l’interprétation rapide des données de l’IMS 3D par la segmentation multivariée. L’analyse d’aortes d’un modèle murin a été le point de départ pour le développement des méthodes car ce sont des échantillons mieux contrôlés. En corrélant les données acquises en mode d’ionisation positive et négative, l’IMS en 3D a permis de démontrer une accumulation des phospholipides dans les sinus aortiques. De plus, l’IMS par AgLDI a mis en évidence une localisation différentielle des acides gras libres, du cholestérol, des esters du cholestérol et des triglycérides. La segmentation multivariée des signaux lipidiques suite à l’analyse par IMS d’une carotide humaine démontre une histologie moléculaire corrélée avec le degré de sténose de l’artère. Ces recherches aident à mieux comprendre la complexité biologique de l’athérosclérose et peuvent possiblement prédire le développement de certains cas cliniques. La métastase au foie du cancer colorectal (Colorectal cancer liver metastasis en anglais, CRCLM) est la maladie métastatique du cancer colorectal primaire, un des cancers le plus fréquent au monde. L’évaluation et le pronostic des tumeurs CRCLM sont effectués avec l’histopathologie avec une marge d’erreur. Nous avons utilisé l’IMS des lipides pour identifier les compartiments histologiques du CRCLM et extraire leurs signatures lipidiques. En exploitant ces signatures moléculaires, nous avons pu déterminer un score histopathologique quantitatif et objectif et qui corrèle avec le pronostic. De plus, par la dissection des signatures lipidiques, nous avons identifié des espèces lipidiques individuelles qui sont discriminants des différentes histologies du CRCLM et qui peuvent potentiellement être utilisées comme des biomarqueurs pour la détermination de la réponse à la thérapie. Plus spécifiquement, nous avons trouvé une série de plasmalogènes et sphingolipides qui permettent de distinguer deux différents types de nécrose (infarct-like necrosis et usual necrosis en anglais, ILN et UN, respectivement). L’ILN est associé avec la réponse aux traitements chimiothérapiques, alors que l’UN est associé au fonctionnement normal de la tumeur.
Resumo:
Traditional utility analysis only calculates the value of a given selection procedure over random selection. This assumption is not only an inaccurate representation of staffing policy but also leads to overestimates of a device’s value. This paper presents a more accurate method for computing the validity of a selection battery for when there are multiple selection devices and multiple criteria. Application of the method is illustrated using previous utility analysis work and an actual case of administrative assistants with eight predictors and nine criteria. A final example also is provided that includes these advancements as well as other researchers’ advances in a combined utility model. Results reveal that accounting for multiple criteria and outcomes dramatically reduces the utility estimates of implementing new selection devices.
Resumo:
Network Virtualization is a key technology for the Future Internet, allowing the deployment of multiple independent virtual networks that use resources of the same basic infrastructure. An important challenge in the dynamic provision of virtual networks resides in the optimal allocation of physical resources (nodes and links) to requirements of virtual networks. This problem is known as Virtual Network Embedding (VNE). For the resolution of this problem, previous research has focused on designing algorithms based on the optimization of a single objective. On the contrary, in this work we present a multi-objective algorithm, called VNE-MO-ILP, for solving dynamic VNE problem, which calculates an approximation of the Pareto Front considering simultaneously resource utilization and load balancing. Experimental results show evidences that the proposed algorithm is better or at least comparable to a state-of-the-art algorithm. Two performance metrics were simultaneously evaluated: (i) Virtual Network Request Acceptance Ratio and (ii) Revenue/Cost Relation. The size of test networks used in the experiments shows that the proposed algorithm scales well in execution times, for networks of 84 nodes
Resumo:
This research looks into forms of state crime taking place around the U.S.-Mexico border. On the Mexican side of the border violent corruption and criminal activities stemming from state actors complicity with drug trafficking organisations has produced widespread violence and human casualty while forcing many to cross the border legally or illegally in fear for their lives. Upon their arrival on the U.S. side of the border, these individuals are treated as criminal suspects. They are held in immigration detention facilities, interrogated and categorised as inadmissible ‘economic migrants’ or ‘drug offenders’ only to be denied asylum status and deported to dangerous and violent zones in Mexico. These individuals have been persecuted and victimised by the state during the 2007-2012 counter narcotic operations on one side of the border while criminalised and punished by a categorizing anti-immigration regime on the other side of the border. This thesis examines this border crisis as injurious actions against border residents have been executed by the states under legal and illegal formats in violation of criminal law and human rights conventions. The ethnographic research uses data to develop a nuanced understanding of individuals’ experiences of state victimisation on both sides of the border. In contributing to state crime scholarship it presents a multidimensional theoretical lens by using organised crime theoretical models and critical criminology concepts to explain the role of the state in producing multiple insecurities that exclude citizens and non-citizens through criminalisation processes.
Resumo:
The central motif of this work is prediction and optimization in presence of multiple interacting intelligent agents. We use the phrase `intelligent agents' to imply in some sense, a `bounded rationality', the exact meaning of which varies depending on the setting. Our agents may not be `rational' in the classical game theoretic sense, in that they don't always optimize a global objective. Rather, they rely on heuristics, as is natural for human agents or even software agents operating in the real-world. Within this broad framework we study the problem of influence maximization in social networks where behavior of agents is myopic, but complication stems from the structure of interaction networks. In this setting, we generalize two well-known models and give new algorithms and hardness results for our models. Then we move on to models where the agents reason strategically but are faced with considerable uncertainty. For such games, we give a new solution concept and analyze a real-world game using out techniques. Finally, the richest model we consider is that of Network Cournot Competition which deals with strategic resource allocation in hypergraphs, where agents reason strategically and their interaction is specified indirectly via player's utility functions. For this model, we give the first equilibrium computability results. In all of the above problems, we assume that payoffs for the agents are known. However, for real-world games, getting the payoffs can be quite challenging. To this end, we also study the inverse problem of inferring payoffs, given game history. We propose and evaluate a data analytic framework and we show that it is fast and performant.
Resumo:
ABSTRACT Researchers frequently have to analyze scales in which some participants have failed to respond to some items. In this paper we focus on the exploratory factor analysis of multidimensional scales (i.e., scales that consist of a number of subscales) where each subscale is made up of a number of Likert-type items, and the aim of the analysis is to estimate participants' scores on the corresponding latent traits. We propose a new approach to deal with missing responses in such a situation that is based on (1) multiple imputation of non-responses and (2) simultaneous rotation of the imputed datasets. We applied the approach in a real dataset where missing responses were artificially introduced following a real pattern of non-responses, and a simulation study based on artificial datasets. The results show that our approach (specifically, Hot-Deck multiple imputation followed of Consensus Promin rotation) was able to successfully compute factor score estimates even for participants that have missing data.
Resumo:
La spectrométrie de masse mesure la masse des ions selon leur rapport masse sur charge. Cette technique est employée dans plusieurs domaines et peut analyser des mélanges complexes. L’imagerie par spectrométrie de masse (Imaging Mass Spectrometry en anglais, IMS), une branche de la spectrométrie de masse, permet l’analyse des ions sur une surface, tout en conservant l’organisation spatiale des ions détectés. Jusqu’à présent, les échantillons les plus étudiés en IMS sont des sections tissulaires végétales ou animales. Parmi les molécules couramment analysées par l’IMS, les lipides ont suscité beaucoup d'intérêt. Les lipides sont impliqués dans les maladies et le fonctionnement normal des cellules; ils forment la membrane cellulaire et ont plusieurs rôles, comme celui de réguler des événements cellulaires. Considérant l’implication des lipides dans la biologie et la capacité du MALDI IMS à les analyser, nous avons développé des stratégies analytiques pour la manipulation des échantillons et l’analyse de larges ensembles de données lipidiques. La dégradation des lipides est très importante dans l’industrie alimentaire. De la même façon, les lipides des sections tissulaires risquent de se dégrader. Leurs produits de dégradation peuvent donc introduire des artefacts dans l’analyse IMS ainsi que la perte d’espèces lipidiques pouvant nuire à la précision des mesures d’abondance. Puisque les lipides oxydés sont aussi des médiateurs importants dans le développement de plusieurs maladies, leur réelle préservation devient donc critique. Dans les études multi-institutionnelles où les échantillons sont souvent transportés d’un emplacement à l’autre, des protocoles adaptés et validés, et des mesures de dégradation sont nécessaires. Nos principaux résultats sont les suivants : un accroissement en fonction du temps des phospholipides oxydés et des lysophospholipides dans des conditions ambiantes, une diminution de la présence des lipides ayant des acides gras insaturés et un effet inhibitoire sur ses phénomènes de la conservation des sections au froid sous N2. A température et atmosphère ambiantes, les phospholipides sont oxydés sur une échelle de temps typique d’une préparation IMS normale (~30 minutes). Les phospholipides sont aussi décomposés en lysophospholipides sur une échelle de temps de plusieurs jours. La validation d’une méthode de manipulation d’échantillon est d’autant plus importante lorsqu’il s’agit d’analyser un plus grand nombre d’échantillons. L’athérosclérose est une maladie cardiovasculaire induite par l’accumulation de matériel cellulaire sur la paroi artérielle. Puisque l’athérosclérose est un phénomène en trois dimension (3D), l'IMS 3D en série devient donc utile, d'une part, car elle a la capacité à localiser les molécules sur la longueur totale d’une plaque athéromateuse et, d'autre part, car elle peut identifier des mécanismes moléculaires du développement ou de la rupture des plaques. l'IMS 3D en série fait face à certains défis spécifiques, dont beaucoup se rapportent simplement à la reconstruction en 3D et à l’interprétation de la reconstruction moléculaire en temps réel. En tenant compte de ces objectifs et en utilisant l’IMS des lipides pour l’étude des plaques d’athérosclérose d’une carotide humaine et d’un modèle murin d’athérosclérose, nous avons élaboré des méthodes «open-source» pour la reconstruction des données de l’IMS en 3D. Notre méthodologie fournit un moyen d’obtenir des visualisations de haute qualité et démontre une stratégie pour l’interprétation rapide des données de l’IMS 3D par la segmentation multivariée. L’analyse d’aortes d’un modèle murin a été le point de départ pour le développement des méthodes car ce sont des échantillons mieux contrôlés. En corrélant les données acquises en mode d’ionisation positive et négative, l’IMS en 3D a permis de démontrer une accumulation des phospholipides dans les sinus aortiques. De plus, l’IMS par AgLDI a mis en évidence une localisation différentielle des acides gras libres, du cholestérol, des esters du cholestérol et des triglycérides. La segmentation multivariée des signaux lipidiques suite à l’analyse par IMS d’une carotide humaine démontre une histologie moléculaire corrélée avec le degré de sténose de l’artère. Ces recherches aident à mieux comprendre la complexité biologique de l’athérosclérose et peuvent possiblement prédire le développement de certains cas cliniques. La métastase au foie du cancer colorectal (Colorectal cancer liver metastasis en anglais, CRCLM) est la maladie métastatique du cancer colorectal primaire, un des cancers le plus fréquent au monde. L’évaluation et le pronostic des tumeurs CRCLM sont effectués avec l’histopathologie avec une marge d’erreur. Nous avons utilisé l’IMS des lipides pour identifier les compartiments histologiques du CRCLM et extraire leurs signatures lipidiques. En exploitant ces signatures moléculaires, nous avons pu déterminer un score histopathologique quantitatif et objectif et qui corrèle avec le pronostic. De plus, par la dissection des signatures lipidiques, nous avons identifié des espèces lipidiques individuelles qui sont discriminants des différentes histologies du CRCLM et qui peuvent potentiellement être utilisées comme des biomarqueurs pour la détermination de la réponse à la thérapie. Plus spécifiquement, nous avons trouvé une série de plasmalogènes et sphingolipides qui permettent de distinguer deux différents types de nécrose (infarct-like necrosis et usual necrosis en anglais, ILN et UN, respectivement). L’ILN est associé avec la réponse aux traitements chimiothérapiques, alors que l’UN est associé au fonctionnement normal de la tumeur.
Resumo:
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration.
Resumo:
Purpose: The purpose of this paper is to present the application of logical framework analysis (LFA) for implementing continuous quality improvement (CQI) across multiple settings in a tertiary care hospital. Design/methodology/approach: This study adopts a multiple case study approach. LFA is implemented within three diverse settings, namely, intensive care unit, surgical ward, and acute in-patient psychiatric ward. First, problem trees are developed in order to determine the root causes of quality issues, specific to the three settings. Second, objective trees are formed suggesting solutions to the quality issues. Third, project plan template using logical framework (LOGFRAME) is created for each setting. Findings: This study shows substantial improvement in quality across the three settings. LFA proved to be effective to analyse quality issues and suggest improvement measures objectively. Research limitations/implications: This paper applies LFA in specific, albeit, diverse settings in one hospital. For validation purposes, it would be ideal to analyse in other settings within the same hospital, as well as in several hospitals. It also adopts a bottom-up approach when this can be triangulated with other sources of data. Practical implications: LFA enables top management to obtain an integrated view of performance. It also provides a basis for further quantitative research on quality management through the identification of key performance indicators and facilitates the development of a business case for improvement. Originality/value: LFA is a novel approach for the implementation of CQI programs. Although LFA has been used extensively for project development to source funds from development banks, its application in quality improvement within healthcare projects is scant.
Resumo:
Brucellosis is endemic in most parts of Egypt, where it is caused mainly by Brucella melitensis biovar 3, and affects cattle and small ruminants in spite of ongoing efforts devoted to its control. Knowledge of the predominant Brucella species/strains circulating in a region is a prerequisite of a brucellosis control strategy. For this reason a study aiming at the evaluation of the phenotypic and genetic heterogeneity of a panel of 17 Brucella spp. isolates recovered from domestic ruminants (cattle, buffalo, sheep, and goat) from four governorates during a period of five years (2002-2007) was carried out using microbiological tests and molecular biology techniques (PCR, MLVA-15, and sequencing). Thirteen strains were identified as B. melitensis biovar 3 while all phenotypic and genetic techniques classified the remaining isolates as B. abortus (n = 2) and B. suis biovar 1 (n = 2). MLVA-15 yielded a high discriminatory power (h = 0.801), indicating a high genetic diversity among the B. melitensis strains circulating among domestic ruminants in Egypt. This is the first report of the isolation of B. suis from cattle in Egypt which, coupled with the finding of B. abortus, suggests a potential role of livestock as reservoirs of several zoonotic Brucella species in the region.
Resumo:
String searching within a large corpus of data is an important component of digital forensic (DF) analysis techniques such as file carving. The continuing increase in capacity of consumer storage devices requires corresponding im-provements to the performance of string searching techniques. As string search-ing is a trivially-parallelisable problem, GPGPU approaches are a natural fit – but previous studies have found that local storage presents an insurmountable performance bottleneck. We show that this need not be the case with modern hardware, and demonstrate substantial performance improvements from the use of single and multiple GPUs when searching for strings within a typical forensic disk image.
Resumo:
This study focuses on multiple linear regression models relating six climate indices (temperature humidity THI, environmental stress ESI, equivalent temperature index ETI, heat load HLI, modified HLI (HLI new), and respiratory rate predictor RRP) with three main components of cow’s milk (yield, fat, and protein) for cows in Iran. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Uncertainty estimation is employed by applying bootstrapping through resampling. Cross validation is used to avoid over-fitting. Climatic parameters are calculated from the NASA-MERRA global atmospheric reanalysis. Milk data for the months from April to September, 2002 to 2010 are used. The best linear regression models are found in spring between milk yield as the predictand and THI, ESI, ETI, HLI, and RRP as predictors with p-value < 0.001 and R2 (0.50, 0.49) respectively. In summer, milk yield with independent variables of THI, ETI, and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. This method is suggested for the impact studies of climate variability/change on agriculture and food science fields when short-time series or data with large uncertainty are available.
Resumo:
Remote sensing is a promising approach for above ground biomass estimation, as forest parameters can be obtained indirectly. The analysis in space and time is quite straight forward due to the flexibility of the method to determine forest crown parameters with remote sensing. It can be used to evaluate and monitoring for example the development of a forest area in time and the impact of disturbances, such as silvicultural practices or deforestation. The vegetation indices, which condense data in a quantitative numeric manner, have been used to estimate several forest parameters, such as the volume, basal area and above ground biomass. The objective of this study was the development of allometric functions to estimate above ground biomass using vegetation indices as independent variables. The vegetation indices used were the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Simple Ratio (SR) and Soil-Adjusted Vegetation Index (SAVI). QuickBird satellite data, with 0.70 m of spatial resolution, was orthorectified, geometrically and atmospheric corrected, and the digital number were converted to top of atmosphere reflectance (ToA). Forest inventory data and published allometric functions at tree level were used to estimate above ground biomass per plot. Linear functions were fitted for the monospecies and multispecies stands of two evergreen oaks (Quercus suber and Quercus rotundifolia) in multiple use systems, montados. The allometric above ground biomass functions were fitted considering the mean and the median of each vegetation index per grid as independent variable. Species composition as a dummy variable was also considered as an independent variable. The linear functions with better performance are those with mean NDVI or mean SR as independent variable. Noteworthy is that the two better functions for monospecies cork oak stands have median NDVI or median SR as independent variable. When species composition dummy variables are included in the function (with stepwise regression) the best model has median NDVI as independent variable. The vegetation indices with the worse model performance were EVI and SAVI.