978 resultados para multi-purpose trips
Resumo:
This study aims to design a wearable system for kinetics measurement of multi-segment foot joints in long-distance walking and to investigate its suitability for clinical evaluations. The wearable system consisted of inertial sensors (3D gyroscopes and 3D accelerometers) on toes, forefoot, hindfoot, and shank, and a plantar pressure insole. After calibration in a laboratory, 10 healthy elderly subjects and 12 patients with ankle osteoarthritis walked 50m twice wearing this system. Using inverse dynamics, 3D forces, moments, and power were calculated in the joint sections among toes, forefoot, hindfoot, and shank. Compared to those we previously estimated for a one-segment foot model, the sagittal and transverse moments and power in the ankle joint, as measured via multi-segment foot model, showed a normalized RMS difference of less than 11%, 14%, and 13%, respectively, for healthy subjects, and 13%, 15%, and 14%, for patients. Similar to our previous study, the coronal moments were not analyzed. Maxima-minima values of anterior-posterior and vertical force, sagittal moment, and power in shank-hindfoot and hindfoot-forefoot joints were significantly different between patients and healthy subjects. Except for power, the inter-subject repeatability of these parameters was CMC>0.90 for healthy subjects and CMC>0.70 for patients. Repeatability of these parameters was lower for the forefoot-toes joint. The proposed measurement system estimated multi-segment foot joints kinetics with acceptable repeatability but showed difference, compared to those previously estimated for the one-segment foot model. These parameters also could distinguish patients from healthy subjects. Thus, this system is suggested for outcome evaluations of foot treatments.
Resumo:
Ecossistemas marinhos de upwelling são muito heterogêneos e apresentam uma intensa atividade de mesoescala de dimensão de dezenas de quilômetros e submesoescala que variam de centenas de metros até quilômetros dos processos físicos. A importância das estruturas dos processos físicos está na estruturação que eles exercem sob a biomassa de zooplâncton. O presente trabalho está relacionado a um estudo realizado a cabo no Norte do Sistema da Corrente de Humboldt (Peru). Utilizou-se duas variáveis, a profundidade do limite superior da zona de mínimo oxigênio (ZMO) e a biomassa de zooplâncton. É desenvolvida uma metodologia de análise baseada no uso de ondaletas para a identi cação das estruturas dos processos físicos em suas diferentes escalas. O método foi aplicado aos dados de ZMO. Estudos de simula ção mostraram que o método tem a capacidade de identi car as estruturas de interesse, tendo erro de estimação nas bordas do espectro da potência de ondaleta. A tipologia das estruturas identi cadas mostraram que existe três tipos de estruturas, estruturas maiores de mesoescala, duas estruturas pequenas de submesoescala com profundidades diferentes. Outro resultado importante foi que dentro das estruturas pequenas e mais profundas existe maior biomassa de zooplâncton, principalmente nas estruturas de downwelling.
Resumo:
Systemic fungal infections remain a significant cause of mortality in neutropenic and immunocompromised patients, despite advances in their diagnosis and treatment. The incidence of such infections is rising due to the use of intensive chemotherapy regimens in patients with solid tumours or haematological cancers, the increasing numbers of allogeneic haematopoietic stem cell and solid organ transplants, and the use of potent immunosuppressive therapy in patients with autoimmune disorders. In addition, the epidemiology of systemic fungal infections is changing, with atypical species such as Aspergillus terreus and zygomycetes becoming more common. Treatment has traditionally focused on empirical therapy, but targeted pre-emptive therapy in high-risk patients and prophylactic antifungal treatment are increasingly being adopted. New treatments, including lipid formulations of amphotericin B, second-generation broad-spectrum azoles, and echinocandins, offer effective antifungal activity with improved tolerability compared with older agents; the potential impact of these treatments is reflected in their inclusion in current treatment and prophylaxis guidelines. New treatment strategies, such as aerosolized lipid formulations of amphotericin B, may also reduce the burden of mortality associated with systemic fungal infections. The challenge is to identify ways of coupling potentially effective treatments with early and reliable identification of patients at highest risk of infection.
Resumo:
La multi-metodología autobiográfica es una aproximación cualitativa que combina distintas técnicas para estudiar la construcción narrativa de la identidad. El objetivo de este artículo es ofrecer una revisión de dicho enfoque a partir de una expansión de los distintos instrumentos cualitativos utilizados. Más concretamente, la multi-metodología autobiográfica extendida (MAE) consta de cuatro grupos de técnicas: entrevistas en profundidad (historia de vida, entrevista de fondos de conocimiento y la entrevista de Durand), el retrato o dibujo identitario revisado (dibujo identitario, auto-definición, tarea identitaria de las diez definiciones), el análisis de los artefactos-rutinas-formas de vida (diario de una semana, detección de artefactos, rutinas a través de fotografías, rutinas educativas a través de fotografías ) y la utilización de distintos “mapas psicológicos o psicogeográficos” (cronograma, genograma, ecomapa, geomapa y mapa relacional). Después de definir la identidad, los fondos de conocimiento y las formas de vida como posibles objetos de estudio en ciencias sociales, el artículo describe e ilustra las distintas técnicas que componen la metodología propuesta. Se concluye recomendando la triangulación de técnicas cualitativas narrativas basadas en el lenguaje, el caso de las tradicionales entrevistas en profundidad, con determinados procedimientos visuales, a partir de la utilización de fotografías o representaciones gráficas
Resumo:
Erythropoietin (EPO) has been recognized as a neuroprotective agent. In animal models of neonatal brain injury, exogenous EPO has been shown to reduce lesion size, improve structure and function. Experimental studies have focused on short course treatment after injury. Timing, dose and length of treatment in preterm brain damage remain to be defined. We have evaluated the effects of high dose and long-term EPO treatment in hypoxic-ischemic (HI) injury in 3 days old (P3) rat pups using histopathology, magnetic resonance imaging (MRI) and spectroscopy (MRS) as well as functional assessment with somatosensory-evoked potentials (SEP). After HI, rat pups were assessed by MRI for initial damage and were randomized to receive EPO or vehicle. At the end of treatment period (P25) the size of resulting cortical damage and white matter (WM) microstructure integrity were assessed by MRI and cortical metabolism by MRS. Whisker elicited SEP were recorded to evaluate somatosensory function. Brains were collected for neuropathological assessment. The EPO treated animals did not show significant decrease of the HI induced cortical loss at P25. WM microstructure measured by diffusion tensor imaging was improved and SEP response in the injured cortex was recovered in the EPO treated animals compared to vehicle treated animals. In addition, the metabolic profile was less altered in the EPO group. Long-term treatment with high dose EPO after HI injury in the very immature rat brain induced recovery of WM microstructure and connectivity as well as somatosensory cortical function despite no effects on volume of cortical damage. This indicates that long-term high-dose EPO induces recovery of structural and functional connectivity despite persisting gross anatomical cortical alteration resulting from HI.
Resumo:
BACKGROUND: Transient balanced steady-state free-precession (bSSFP) has shown substantial promise for noninvasive assessment of coronary arteries but its utilization at 3.0 T and above has been hampered by susceptibility to field inhomogeneities that degrade image quality. The purpose of this work was to refine, implement, and test a robust, practical single-breathhold bSSFP coronary MRA sequence at 3.0 T and to test the reproducibility of the technique. METHODS: A 3D, volume-targeted, high-resolution bSSFP sequence was implemented. Localized image-based shimming was performed to minimize inhomogeneities of both the static magnetic field and the radio frequency excitation field. Fifteen healthy volunteers and three patients with coronary artery disease underwent examination with the bSSFP sequence (scan time = 20.5 ± 2.0 seconds), and acquisitions were repeated in nine subjects. The images were quantitatively analyzed using a semi-automated software tool, and the repeatability and reproducibility of measurements were determined using regression analysis and intra-class correlation coefficient (ICC), in a blinded manner. RESULTS: The 3D bSSFP sequence provided uniform, high-quality depiction of coronary arteries (n = 20). The average visible vessel length of 100.5 ± 6.3 mm and sharpness of 55 ± 2% compared favorably with earlier reported navigator-gated bSSFP and gradient echo sequences at 3.0 T. Length measurements demonstrated a highly statistically significant degree of inter-observer (r = 0.994, ICC = 0.993), intra-observer (r = 0.894, ICC = 0.896), and inter-scan concordance (r = 0.980, ICC = 0.974). Furthermore, ICC values demonstrated excellent intra-observer, inter-observer, and inter-scan agreement for vessel diameter measurements (ICC = 0.987, 0.976, and 0.961, respectively), and vessel sharpness values (ICC = 0.989, 0.938, and 0.904, respectively). CONCLUSIONS: The 3D bSSFP acquisition, using a state-of-the-art MR scanner equipped with recently available technologies such as multi-transmit, 32-channel cardiac coil, and localized B0 and B1+ shimming, allows accelerated and reproducible multi-segment assessment of the major coronary arteries at 3.0 T in a single breathhold. This rapid sequence may be especially useful for functional imaging of the coronaries where the acquisition time is limited by the stress duration and in cases where low navigator-gating efficiency prohibits acquisition of a free breathing scan in a reasonable time period.
Resumo:
Background and objective: Optimal care of diabetic patients (DPs) decreases the risk of complications. Close blood glucose monitoring can improve patient outcomes and shorten hospital stay. The objective of this pilot study was to evaluate the treatment of hospitalized DPs according to the current standards, including their diabetic treatment and drugs to prevent diabetes related complications [=guardian drugs: angiotensin converting enzyme inhibitors (ACEI) or Angiotensin II Receptor Blockers (ARB), antiplatelet drugs, statins]. Guidelines of the American Diabetes Association (ADA) [1] were used as reference as they were the most recent and exhaustive for hospital care. Design: Observational pilot study: analysis of the medical records of all DPs seen by the clinical pharmacists during medical rounds in different hospital units. An assessment was made by assigning points for fulfilling the different criteria according to ADA and then by dividing the total by the maximum achievable points (scale 0-1; 1 = all criteria fulfilled). Setting: Different Internal Medicine and Geriatric Units of the (multi-site) Ho^pital du Valais. Main outcome measures: - Completeness of diabetes-related information: type of diabetes, medical history, weight, albuminuria status, renal function, blood pressure, (recent) lipid profile. - Management of blood glucose: Hb1Ac, glycemic control, plan for treating hyper-/hypoglycaemia. - Presence of guardian drugs if indicated. Results: Medical records of 42 patients in 10 different units were analysed (18 women, 24 men, mean age 75.4 ± 11 years). 41 had type 2 diabetes. - Completeness of diabetes-related information: 0.8 ± 0.1. Information often missing: insulin-dependence (43%) and lipid profile (86%). - Management of blood glucose: 0.5 ± 0.2. 15 patients had suboptimal glycemic balance (target glycaemia 7.2-11.2 mmol/ l, with values[11.2 or\3.8 mmol/l, or Hb1Ac[7%), 10 patients had a deregulated balance (more than 10 values[11.2 mmol/l or \3.8 mmol/l and even values[15 mmol/l). - Presence of guardian drugs if indicated: ACEI/ARB: 19 of 23 patients (82.6%), statin: 16 of 40 patients (40%), antiplatelet drug: 16 of 39 patients (41%). Conclusions: Blood glucose control was insufficient in many DPs and prescription of statins and antiplatelet drugs was often missing. If confirmed by a larger study, these two points need to be optimised. As it is not always possible and appropriate to make those changes during hospital stay, a further project should assess and optimise diabetes care across both inpatient and outpatient settings.
Resumo:
PURPOSE: To compare the diagnostic performance of multi-detector CT arthrography (CTA) and 1.5-T MR arthrography (MRA) in detecting hyaline cartilage lesions of the shoulder, with arthroscopic correlation. PATIENTS AND METHODS: CTA and MRA prospectively obtained in 56 consecutive patients following the same arthrographic procedure were independently evaluated for glenohumeral cartilage lesions (modified Outerbridge grade ≥2 and grade 4) by two musculoskeletal radiologists. The cartilage surface was divided in 18 anatomical areas. Arthroscopy was taken as the reference standard. Diagnostic performance of CTA and MRA was compared using ROC analysis. Interobserver and intraobserver agreement was determined by κ statistics. RESULTS: Sensitivity and specificity of CTA varied from 46.4 to 82.4 % and from 89.0 to 95.9 % respectively; sensitivity and specificity of MRA varied from 31.9 to 66.2 % and from 91.1 to 97.5 % respectively. Diagnostic performance of CTA was statistically significantly better than MRA for both readers (all p ≤ 0.04). Interobserver agreement for the evaluation of cartilage lesions was substantial with CTA (κ = 0.63) and moderate with MRA (κ = 0.54). Intraobserver agreement was almost perfect with both CTA (κ = 0.94-0.95) and MRA (κ = 0.83-0.87). CONCLUSION: The diagnostic performance of CTA and MRA for the detection of glenohumeral cartilage lesions is moderate, although statistically significantly better with CTA. KEY POINTS: ? CTA has moderate diagnostic performance for detecting glenohumeral cartilage substance loss. ? MRA has moderate diagnostic performance for detecting glenohumeral cartilage substance loss. ? CTA is more accurate than MRA for detecting cartilage substance loss.
Resumo:
Numérisation partielle de reliure
Resumo:
The recent availability of the chicken genome sequence poses the question of whether there are human protein-coding genes conserved in chicken that are currently not included in the human gene catalog. Here, we show, using comparative gene finding followed by experimental verification of exon pairs by RT-PCR, that the addition to the multi-exonic subset of this catalog could be as little as 0.2%, suggesting that we may be closing in on the human gene set. Our protocol, however, has two shortcomings: (i) the bioinformatic screening of the predicted genes, applied to filter out false positives, cannot handle intronless genes; and (ii) the experimental verification could fail to identify expression at a specific developmental time. This highlights the importance of developing methods that could provide a reliable estimate of the number of these two types of genes.
Resumo:
Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images.