933 resultados para multi-modal hyperbranched polymers
Resumo:
This paper proposes a new multi-stage mine production timetabling (MMPT) model to optimise open-pit mine production operations including drilling, blasting and excavating under real-time mining constraints. The MMPT problem is formulated as a mixed integer programming model and can be optimally solved for small-size MMPT instances by IBM ILOG-CPLEX. Due to NP-hardness, an improved shifting-bottleneck-procedure algorithm based on the extended disjunctive graph is developed to solve large-size MMPT instances in an effective and efficient way. Extensive computational experiments are presented to validate the proposed algorithm that is able to efficiently obtain the near-optimal operational timetable of mining equipment units. The advantages are indicated by sensitivity analysis under various real-life scenarios. The proposed MMPT methodology is promising to be implemented as a tool for mining industry because it is straightforwardly modelled as a standard scheduling model, efficiently solved by the heuristic algorithm, and flexibly expanded by adopting additional industrial constraints.
Resumo:
This paper reviews the recent research progress on multi-layer composite structures composed of variety of materials. The utilization of multi-layer composite system is found to be common in metal structures and pavement systems. The layer of composite structure designed to encounter heavy dynamic energy should have sufficient ductility to counteract the intensity of energy. Therefore, the selection of materials and enhancement of interface bonding become crucial and both are discussed in this paper. The failure modes have also been explored in conjunction with stresses at failures and inferred solutions are also revealed. The paper attempts to reveal all technical facts on multi-layer composite structure in a broad field.
Resumo:
In this paper a strategy for controlling a group of agents to achieve positional consensus is presented. The proposed technique is based on the constraint that every agents must be given the same control input through a broadcast communication mechanism. Although the control command is computed using state information in a global framework, the control input is implemented by the agents in a local coordinate frame. We propose a novel linear programming formulation that is computationally less intensive than earlier proposed methods. Moreover, we introduce a random perturbation input in the control command that helps us to achieve perfect consensus even for a large number of agents, which was not possible with the existing strategy in the literature. Moreover, we extend the method to achieve positional consensus at a pre-specified location. The effectiveness of the approach is illustrated through simulation results.
Resumo:
Taking a more integrated approach to planning our neighbourhoods for the continuum of inhabitants’ ages and abilities makes sense given our current and future population composition. Seldom are the built environment requirements of diverse groups (e.g. children, seniors, and people with disability) synthesised, resulting in often unfriendly and exclusionary neighbourhoods. This often means people experience barriers or restriction on their freedom to move about and interact within their neighbourhood. Applying universal design to neighbourhoods may provide a bridging link. By presenting two cases from South-East Queensland (SEQ), Australia, through the lenses of different ages and abilities - older children with physical disabilities and their families (Stafford 2013, 2014) and seniors (Baldwin et al. 2012), we intend to increase recognition of users' needs and stimulate the translation of knowledge to the practice of planning inclusive neighbourhoods.
Resumo:
Abstract is not available.
Resumo:
Abstract is not available.
Resumo:
Hydraulic instabilities represent a critical problem for Francis and Kaplan turbines, reducing their useful life due to increase of fatigue on the components and cavitation phenomena. Whereas an exhaustive list of publications on computational fluid-dynamic models of hydraulic instability is available, the possibility of applying diagnostic techniques based on vibration measurements has not been investigated sufficiently, also because the appropriate sensors seldom equip hydro turbine units. The aim of this study is to fill this knowledge gap and to exploit fully, for this purpose, the potentiality of combining cyclostationary analysis tools, able to describe complex dynamics such as those of fluid-structure interactions, with order tracking procedures, allowing domain transformations and consequently the separation of synchronous and non-synchronous components. This paper will focus on experimental data obtained on a full-scale Kaplan turbine unit, operating in a real power plant, tackling the issues of adapting such diagnostic tools for the analysis of hydraulic instabilities and proposing techniques and methodologies for a highly automated condition monitoring system. © 2015 Elsevier Ltd.
Resumo:
Hospitals are critical elements of health care systems and analysing their capacity to do work is a very important topic. To perform a system wide analysis of public hospital resources and capacity, a multi-objective optimization (MOO) approach has been proposed. This approach identifies the theoretical capacity of the entire hospital and facilitates a sensitivity analysis, for example of the patient case mix. It is necessary because the competition for hospital resources, for example between different entities, is highly influential on what work can be done. The MOO approach has been extensively tested on a real life case study and significant worth is shown. In this MOO approach, the epsilon constraint method has been utilized. However, for solving real life applications, with a large number of competing objectives, it was necessary to devise new and improved algorithms. In addition, to identify the best solution, a separable programming approach was developed. Multiple optimal solutions are also obtained via the iterative refinement and re-solution of the model.
Resumo:
Multi-agent systems implicate a high degree of concurrency at both the Inter- and Intra-Agent levels. Scalable, fault tolerant, Agent Grooming Environment (SAGE), the second generation, FIPA compliant MAS requires a built in mechanism to achieve both the Inter- and Intra-Agent concurrency. This paper dilates upon an attempt to provide a reliable, efficient and light-weight solution to provide intra-agent concurrency with-in the internal agent architecture of SAGE. It addresses the issues related to using the JAVA threading model to provide this level of concurrency to the agent and provides an alternative approach that is based on an eventdriven, concurrent and user-scalable multi-tasking model for the agent's internal model. The findings of this paper show that our proposed approach is suitable for providing an efficient and lightweight concurrent task model for SA GE and considerably outweighs the performance of multithreaded tasking model based on JAVA in terms of throughput and efficiency. This has been illustrated using the practical implementation and evaluation of both models. © 2004 IEEE.
Resumo:
A modal analysis and near-field study for a dielectric-coated conducting sphere excited by a delta function electric field source has been made. The structure can support an infinite number of modes theoretically. For equatorial excitation only odd order modes are excited, whereas for non-equatorial excitation both even and odd order modes are excited. The variation of the amplitude coefficients both internal and external exhibit a different nature of variation with respect to the various structure parameters for different modes. The field distributions both in the r and theta directions for non-equatorial excitation show good agreement between theory and experiment for the strongest mode.
Resumo:
Distributed Collaborative Computing services have taken over centralized computing platforms allowing the development of distributed collaborative user applications. These applications enable people and computers to work together more productively. Multi-Agent System (MAS) has emerged as a distributed collaborative environment which allows a number of agents to cooperate and interact with each other in a complex environment. We want to place our agents in problems whose solutions require the collation and fusion of information, knowledge or data from distributed and autonomous information sources. In this paper we present the design and implementation of an agent based conference planner application that uses collaborative effort of agents which function continuously and autonomously in a particular environment. The application also enables the collaborative use of services deployed geographically wide in different technologies i.e. Software Agents, Grid computing and Web service. The premise of the application is that it allows autonomous agents interacting with web and grid services to plan a conference as a proxy to their owners (humans). © 2005 IEEE.
Resumo:
Because of limited sensor and communication ranges, designing efficient mechanisms for cooperative tasks is difficult. In this article, several negotiation schemes for multiple agents performing a cooperative task are presented. The negotiation schemes provide suboptimal solutions, but have attractive features of fast decision-making, and scalability to large number of agents without increasing the complexity of the algorithm. A software agent architecture of the decision-making process is also presented. The effect of the magnitude of information flow during the negotiation process is studied by using different models of the negotiation scheme. The performance of the various negotiation schemes, using different information structures, is studied based on the uncertainty reduction achieved for a specified number of search steps. The negotiation schemes perform comparable to that of optimal strategy in terms of uncertainty reduction and also require very low computational time, similar to 7 per cent to that of optimal strategy. Finally, analysis on computational and communication requirement for the negotiation schemes is carried out.
Resumo:
Synthesis, spectroscopic and thermal characterization of two new classes of polysulfide polymers: poly[1(phenoxymethyl) ethylene polysulfide] (PPMEP), and poly [1-(phenoxy) ethylene polysulfide] (PPEP) is presented. The direct pyrolysis mass spectrometry (DP-MS) technique, used to study the thermal degradation behavior of these polysulfide polymers, indicated that the polymers underwent degradation through the weak-links scission. The thermal stability of the polysulfide polymers decreased as the ``rank'' (number of sulfur atoms in the polysulfide linkage; n=1, 2, 4) increased. The main-chain flexibility of these polysulfide polymers in terms of their C-13 NMR spinlattice relaxation time (T-1) measurements on the backbone methine (-CH-) and methylene (-CH2-) carbons are reported here for the first time. A comparative study of the solution chain dynamics indicated that it increased as ``rank'' of the polysulfide linkages decreased as well as by introducing side chain spacers such as, ether (-O-) or methyleneoxy (-CH2O-) groups.
Resumo:
Composites of Polystyrene-multi wall carbon nanotubes (PS-MWNTs) were prepared with loading up to 7 wt% of MWNTs by simple solvent mixing and drying technique. MWNTs with high aspect ratio similar to 4000 were used to make the polymer composites. A very high degree of dispersion of MWNTs was achieved by ultrasonication technique. As a result of high dispersion and high aspect ratio of the MWNTs electrical percolation was observed at rather low weight fraction similar to 0.0021. Characterization of the as prepared PS-MWNTs composites was done by Electron microscopy (EM), X-ray diffraction technique (XRD) and Thermogravimetery analysis (TGA).
Resumo:
By using the method of operators of multiple scales, two coupled nonlinear equations are derived, which govern the slow amplitude modulation of surface gravity waves in two space dimensions. The equations of Davey and Stewartson, which also govern the two-dimensional modulation of the amplitude of gravity waves, are derived as a special case of our equations. For a fully dispersed wave, symmetric about a point which moves with the group velocity, the coupled equations reduce to a nonlinear Schrödinger equation with extra terms representing the effect of the curvature of the wavefront.