1000 resultados para modelagem de equações estruturais
Resumo:
Trata-se da revisão de tópicos de matemática elementar do ensino fundamental com visão do ensino superior. Na subunidade 3 são abordados conceitos de cálculo algébrico, conjunto universo e conjunto solução de uma equação, equações do primeiro grau e inequações do primeiro grau com resolução de problemas. A subunidade 4 engloba a definição dos conceitos de monômios ou termos algébricos e polinômios e suas propriedades. Como complemento a teoria abordada apresenta exemplos de cálculo do mmc de polinômios e de equações fracionárias de primeiro grau com uma incógnita.
Resumo:
Apresenta a revisão de tópicos de matemática elementar do ensino fundamental com visão do ensino superior. Na subunidade 5 são abordados os seguintes tópicos: resolução de Equações do Segundo Grau com exemplo de cálculo, estudo das Raízes da Equação de Segundo Grau, resolução de Equações Biquadradas com exemplo de cálculo e Equações Irracionais com exemplo de cálculo.
Resumo:
Apresenta as equações fundamentais da termodinâmica, considerando escoamento unidirecional, onde se conhecem as propriedades cinéticas e dinâmicas do fluido. Apresenta a lei da conservação de massa, expressa pela equação da continuidade e a equação de conservação de energia. Demonstra a aplicação das equações de balanço de massa e energia para bocais, processos de estrangulamento, turbinas, compressores e ejetores. Apresenta equações de eficiência para turbinas e compressores.
Resumo:
Sistemas dinâmicos são todos os sistemas que evoluem no tempo, qualquer que seja a sua natureza, isto é, sistemas fisícos, biológicos, químicos, sociais, económicos, etc.. Esta evoluçãoo pode ser descrita (modelada) por equaçõess de diferenças, uma vez que esse tempo é muitas vezes medido em intervalos discretos. As equações de diferenças aparecem também quando se estuda métodos para a discretização de equações diferenciais. Assim, este trabalho tem por principal objectivo estudar as soluções de alguns tipos de equações de diferenças. Para isso, começa-se por introduzir o conceito de diferença e a sua relação com as equações de diferenças. Em seguida, determina-se a solução geral das todas as equações lineares de primeira ordem, bem como o estudo do seu comportamento assimptótico. Prossegue-se, desenvolvendo as principais técnicas para determinar a soluçãoo de equações de diferenças lineares de qualquer ordem. Em particular, estudam-se as equações com coeficientes constantes. Depois de se desenvolver a teoria básica dos sistemas lineares de equações de diferenças, particulariza-se aos sistemas lineares autónomos,com apenas duas variáveis dependentes, fazendo assim o estudo do comportamento das soluções no plano de fases. Por fim, utiliza-se a transformada Z como uma ferramenta que permite resolver equações de diferenças, em especial as equações de tipo convolução.