973 resultados para model of criteria systems
Resumo:
The failure of current strategies to provide an explanation for controversial findings on the pattern of pathophysiological changes in Alzheimer's Disease (AD) motivates the necessity to develop new integrative approaches based on multi-modal neuroimaging data that captures various aspects of disease pathology. Previous studies using [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and structural magnetic resonance imaging (sMRI) report controversial results about time-line, spatial extent and magnitude of glucose hypometabolism and atrophy in AD that depend on clinical and demographic characteristics of the studied populations. Here, we provide and validate at a group level a generative anatomical model of glucose hypo-metabolism and atrophy progression in AD based on FDG-PET and sMRI data of 80 patients and 79 healthy controls to describe expected age and symptom severity related changes in AD relative to a baseline provided by healthy aging. We demonstrate a high level of anatomical accuracy for both modalities yielding strongly age- and symptom-severity- dependant glucose hypometabolism in temporal, parietal and precuneal regions and a more extensive network of atrophy in hippocampal, temporal, parietal, occipital and posterior caudate regions. The model suggests greater and more consistent changes in FDG-PET compared to sMRI at earlier and the inversion of this pattern at more advanced AD stages. Our model describes, integrates and predicts characteristic patterns of AD related pathology, uncontaminated by normal age effects, derived from multi-modal data. It further provides an integrative explanation for findings suggesting a dissociation between early- and late-onset AD. The generative model offers a basis for further development of individualized biomarkers allowing accurate early diagnosis and treatment evaluation.
Resumo:
Despite the important benefits for firms of commercial initiatives on the Internet, e-commerce is still an emerging distribution channel, even in developed countries. Thus, more needs to be known about the mechanisms affecting its development. A large number of works have studied firms¿ e-commerce adoption from technological, intraorganizational, institutional, or other specific perspectives, but there is a need for adequately tested integrative frameworks. Hence, this work proposes and tests a model of firms¿ business-to-consumer (called B2C) e-commerce adoption that is founded on a holistic vision of the phenomenon. With this integrative approach, the authors analyze the joint influence of environmental, technological, and organizational factors; moreover, they evaluate this effect over time. Using various representative Spanish data sets covering the period 1996-2005, the findings demonstrate the suitability of the holistic framework. Likewise, some lessons are learned from the analysis of the key building blocks. In particular, the current study provides evidence for the debate about the effect of competitive pressure, since the findings show that competitive pressure disincentivizes e-commerce adoption in the long term. The results also show that the development or enrichment of the consumers¿ consumption patterns, the technological readiness of the market forces, the firm¿s global scope, and its competences in innovation continuously favor e-commerce adoption.
Resumo:
Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%).
Resumo:
Background and Aims: Granulocyte-macrophage colonystimulating factor (GM-CSF), a cytokine modulating the number and function of innate immune cells, has been shown to provide symptomatic benefit in some patients with Crohn's disease (CD). Since, it becomes widely appreciated that a timely and spatially regulated action of innate immune cells is critical for tissue regeneration, we tested whether GM-CSF therapy may favours intestinal mucosal repair in the acute mouse model of dextran sulfate sodium (DSS)-induced colitis. Methods: Mice treated with GM-CSF or saline were exposed for 7 days to DSS to induce colitis. On day 5, 7 and 10, mice were subjected to colonoscopy or sacrificed for evaluation of inflammatory reaction and mucosal healing. Results: GM-CSF therapy prevented body weight loss, diarrhea, dampened inflammatory reactions and ameliorated mucosal damages. Mucosal repair improvement in GM-CSF-treated mice was observed from day 7 on both by colonoscopy (ulceration score 1.2}0.3 (GM-CSF-treated) vs 3.1}0.5 (untreated), p = 0.01) and histological analysis (percentage of reepithelialized ulcers 55%}4% (GM-CSF-treated) vs 18%}13% (untreated), p = 0.01). GM-CSF therapy can still improve the colitis when hematopoietic, but not non-hematopoietic cells, are responsive to GM-CSF, as shown in WT→GM-CSFRKO chimeras. Lastly, we observed that GM-CSF-induced promotion of wound healing is associated with a modification of the cellular composition of DSS-induced colonic inflammatory infiltrate, characterized by the reduction of neutrophil numbers and early accumulation of CD11b+Gr1lo myeloid cells. Conclusion: Our study shows that GM-CSF therapy accelerates the complex program leading to tissue repair during acute colitis and suggests that GM-CSF promotion of mucosal repair might contribute to the symptomatic benefits of GM-CSF therapy observed in some CD patients.
Resumo:
Combination therapy may improve the outcome of Streptococcus pneumoniae-induced bacteraemia. Here we tested the combination of two antipneumococcal agents, daptomycin and Cpl-1 (the pneumococcal Cp-1 bacteriophage lysin), in a mouse model of pneumococcal bacteraemia. Mice were challenged intraperitoneally (i.p.) with 10(6)CFU of the extremely virulent serotype 2 S. pneumoniae D39 isolate. Subtherapeutic doses of daptomycin (0.4mg/kg) and Cpl-1 (0.4mg/kg and 1mg/kg) were administrated i.p. either alone or in combination by a single bolus injection 1h after bacterial challenge. Survival rates of animals were followed over a period of 7 days. Daptomycin (0.4mg/kg) in combination with Cpl-1 (0.4mg/kg) significantly increased the percentage of surviving mice at Day 7 (80%) compared with the untreated control (0%) and daptomycin or Cpl-1 monotherapy (35% and 0%, respectively). Whilst increasing the concentration of Cpl-1 to 1.0mg/kg did not improve survival when injected alone, its combination with 0.4mg/kg daptomycin further increased the survival rate to 95%. Thus, it was found that the combination of daptomycin with Cpl-1 was synergistic and bactericidal against S. pneumoniae in a mouse model of pneumococcal bacteraemia. To our knowledge, this is the first report of synergism between daptomycin and a phage lysin demonstrated in vivo. Such a combination could represent an interesting alternative therapy for the treatment of pneumococcal bacteraemia/sepsis and possibly other severe pneumococcal infections.
Resumo:
This paper presents a model of the Stokes emission vector from the ocean surface. The ocean surface is described as an ensemble of facets with Cox and Munk's (1954) Gram-Charlier slope distribution. The study discusses the impact of different up-wind and cross-wind rms slopes, skewness, peakedness, foam cover models and atmospheric effects on the azimuthal variation of the Stokes vector, as well as the limitations of the model. Simulation results compare favorably, both in mean value and azimuthal dependence, with SSM/I data at 53° incidence angle and with JPL's WINDRAD measurements at incidence angles from 30° to 65°, and at wind speeds from 2.5 to 11 m/s.
Resumo:
Identifiability of the so-called ω-slice algorithm is proven for ARMA linear systems. Although proofs were developed in the past for the simpler cases of MA and AR models, they were not extendible to general exponential linear systems. The results presented in this paper demonstrate a unique feature of the ω-slice method, which is unbiasedness and consistency when order is overdetermined, regardless of the IIR or FIR nature of the underlying system, and numerical robustness.
Resumo:
Diplomityön tarkoituksena on kehittää kolmiulotteinen malli kerrosleijupoltolle. Työn kirjallisuusosa sisältää seuraavat perusteet kerrosleijupolton tekniikasta: yleistiedot, leijutus- ja palamisilmiöt, kiinteän aineen ja kaasun sekoittuminen, päästöt ja lämmönsiirto. Lisäksi palamissysteemin mallinnuksen perusteet ja ratkaisumenetelmät ovat esitelty. Työn mallinnusosassa kehitetty koodi on ohjelmoitu Fortran-ohjelmointikielellä. Kehitetty malli perustuu olemassa olevaan malliin kiertoleijupoltosta. Yhtälö kiintoainekonsentraatioprofiilille on vaihdettu ja kiertovirta on poistettu koodista. Mallilla on tehty herkkyystarkasteluja polttoaineen ja kaasun sekoittumisen sekä reaktiokertoimen vaikutukselle. Visualisointi on tehty ohjelmassa Tecplot 360 ja mallinnustuloksia on vertailtu mitattuihin tuloksiin. Mallin laskemattulokset vastaavat hyvin mittaustuloksia ja kokemusperäisiä tietoja; monissa tapauksissa malli pystyy kvantitatiivisesti kuvaamaan parametrien variointia ja kaikissa tapauksissa malli antaa ainakin kvalitatiivisesti oikeita tuloksia. Työhön liittyvän kehityksen ja mallinnuskokemuksen perusteella on tehty ehdotukset mallin tulevaa kehitystä ja mittauksia varten.
Resumo:
BACKGROUND: So far, none of the existing methods on Murray's law deal with the non-Newtonian behavior of blood flow although the non-Newtonian approach for blood flow modelling looks more accurate. MODELING: In the present paper, Murray's law which is applicable to an arterial bifurcation, is generalized to a non-Newtonian blood flow model (power-law model). When the vessel size reaches the capillary limitation, blood can be modeled using a non-Newtonian constitutive equation. It is assumed two different constraints in addition to the pumping power: the volume constraint or the surface constraint (related to the internal surface of the vessel). For a seek of generality, the relationships are given for an arbitrary number of daughter vessels. It is shown that for a cost function including the volume constraint, classical Murray's law remains valid (i.e. SigmaR(c) = cste with c = 3 is verified and is independent of n, the dimensionless index in the viscosity equation; R being the radius of the vessel). On the contrary, for a cost function including the surface constraint, different values of c may be calculated depending on the value of n. RESULTS: We find that c varies for blood from 2.42 to 3 depending on the constraint and the fluid properties. For the Newtonian model, the surface constraint leads to c = 2.5. The cost function (based on the surface constraint) can be related to entropy generation, by dividing it by the temperature. CONCLUSION: It is demonstrated that the entropy generated in all the daughter vessels is greater than the entropy generated in the parent vessel. Furthermore, it is shown that the difference of entropy generation between the parent and daughter vessels is smaller for a non-Newtonian fluid than for a Newtonian fluid.
Resumo:
Beta-hemolytic Streptococcus agalactiae is the leading cause of bacteremia and invasive infections. These diseases are treated with β-lactams or macrolides, but the emergence of less susceptible and even fully resistant strains is a cause for concern. New bacteriophage lysins could be promising alternatives against such organisms. They hydrolyze the bacterial peptidoglycan at the end of the phage cycle, in order to release the phage progeny. By using a bioinformatic approach to screen several beta-hemolytic streptococci, a gene coding for a lysin was identified on a prophage carried by Streptococcus dysgalactiae subsp. equisimilis SK1249. The gene product, named PlySK1249, harbored an original three-domain structure with a central cell wall-binding domain surrounded by an N-terminal amidase and a C-terminal CHAP domain. Purified PlySK1249 was highly lytic and bactericidal for S. dysgalactiae (2-log10 CFU/ml decrease within 15 min). Moreover, it also efficiently killed S. agalactiae (1.5-log10 CFU/ml decrease within 15 min) but not several streptococcal commensal species. We further investigated the activity of PlySK1249 in a mouse model of S. agalactiae bacteremia. Eighty percent of the animals (n = 10) challenged intraperitoneally with 10(6) CFU of S. agalactiae died within 72 h, whereas repeated injections of PlySK1249 (45 mg/kg 3 times within 24 h) significantly protected the mice (P < 0.01). Thus, PlySK1249, which was isolated from S. dysgalactiae, demonstrated high cross-lytic activity against S. agalactiae both in vitro and in vivo. These encouraging results indicated that PlySK1249 might represent a good candidate to be developed as a new enzybiotic for the treatment of systemic S. agalactiae infections.
Resumo:
Resume : Mieux comprendre les stromatolithes et les tapis microbiens est un sujet important en biogéosciences puisque cela aide à l'étude des premières formes de vie sur Terre, a mieux cerner l'écologie des communautés microbiennes et la contribution des microorganismes a la biominéralisation, et même à poser certains fondements dans les recherches en exobiologie. D'autre part, la modélisation est un outil puissant utilisé dans les sciences naturelles pour appréhender différents phénomènes de façon théorique. Les modèles sont généralement construits sur un système d'équations différentielles et les résultats sont obtenus en résolvant ce système. Les logiciels disponibles pour implémenter les modèles incluent les logiciels mathématiques et les logiciels généraux de simulation. L'objectif principal de cette thèse est de développer des modèles et des logiciels pour aider a comprendre, via la simulation, le fonctionnement des stromatolithes et des tapis microbiens. Ces logiciels ont été développés en C++ en ne partant d'aucun pré-requis de façon a privilégier performance et flexibilité maximales. Cette démarche permet de construire des modèles bien plus spécifiques et plus appropriés aux phénomènes a modéliser. Premièrement, nous avons étudié la croissance et la morphologie des stromatolithes. Nous avons construit un modèle tridimensionnel fondé sur l'agrégation par diffusion limitée. Le modèle a été implémenté en deux applications C++: un moteur de simulation capable d'exécuter un batch de simulations et de produire des fichiers de résultats, et un outil de visualisation qui permet d'analyser les résultats en trois dimensions. Après avoir vérifié que ce modèle peut en effet reproduire la croissance et la morphologie de plusieurs types de stromatolithes, nous avons introduit un processus de sédimentation comme facteur externe. Ceci nous a mené a des résultats intéressants, et permis de soutenir l'hypothèse que la morphologie des stromatolithes pourrait être le résultat de facteurs externes autant que de facteurs internes. Ceci est important car la classification des stromatolithes est généralement fondée sur leur morphologie, imposant que la forme d'un stromatolithe est dépendante de facteurs internes uniquement (c'est-à-dire les tapis microbiens). Les résultats avancés dans ce mémoire contredisent donc ces assertions communément admises. Ensuite, nous avons décidé de mener des recherches plus en profondeur sur les aspects fonctionnels des tapis microbiens. Nous avons construit un modèle bidimensionnel de réaction-diffusion fondé sur la simulation discrète. Ce modèle a été implémenté dans une application C++ qui permet de paramétrer et exécuter des simulations. Nous avons ensuite pu comparer les résultats de simulation avec des données du monde réel et vérifier que le modèle peut en effet imiter le comportement de certains tapis microbiens. Ainsi, nous avons pu émettre et vérifier des hypothèses sur le fonctionnement de certains tapis microbiens pour nous aider à mieux en comprendre certains aspects, comme la dynamique des éléments, en particulier le soufre et l'oxygène. En conclusion, ce travail a abouti à l'écriture de logiciels dédiés à la simulation de tapis microbiens d'un point de vue tant morphologique que fonctionnel, suivant deux approches différentes, l'une holistique, l'autre plus analytique. Ces logiciels sont gratuits et diffusés sous licence GPL (General Public License). Abstract : Better understanding of stromatolites and microbial mats is an important topic in biogeosciences as it helps studying the early forms of life on Earth, provides clues re- garding the ecology of microbial ecosystems and their contribution to biomineralization, and gives basis to a new science, exobiology. On the other hand, modelling is a powerful tool used in natural sciences for the theoretical approach of various phenomena. Models are usually built on a system of differential equations and results are obtained by solving that system. Available software to implement models includes mathematical solvers and general simulation software. The main objective of this thesis is to develop models and software able to help to understand the functioning of stromatolites and microbial mats. Software was developed in C++ from scratch for maximum performance and flexibility. This allows to build models much more specific to a phenomenon rather than general software. First, we studied stromatolite growth and morphology. We built a three-dimensional model based on diffusion-limited aggregation. The model was implemented in two C++ applications: a simulator engine, which can run a batch of simulations and produce result files, and a Visualization tool, which allows results to be analysed in three dimensions. After verifying that our model can indeed reproduce the growth and morphology of several types of stromatolites, we introduced a sedimentation process as an external factor. This lead to interesting results, and allowed to emit the hypothesis that stromatolite morphology may be the result of external factors as much as internal factors. This is important as stromatolite classification is usually based on their morphology, imposing that a stromatolite shape is dependant on internal factors only (i.e. the microbial mat). This statement is contradicted by our findings, Second, we decided to investigate deeper the functioning of microbial mats, We built a two-dimensional reaction-diffusion model based on discrete simulation, The model was implemented in a C++ application that allows setting and running simulations. We could then compare simulation results with real world data and verify that our model can indeed mimic the behaviour of some microbial mats. Thus, we have proposed and verified hypotheses regarding microbial mats functioning in order to help to better understand them, e.g. the cycle of some elements such as oxygen or sulfur. ln conclusion, this PhD provides a simulation software, dealing with two different approaches. This software is free and available under a GPL licence.
Resumo:
D-JNKI1, a cell-permeable peptide inhibitor of the c-Jun N-terminal kinase (JNK) pathway, has been shown to be a powerful neuroprotective agent after focal cerebral ischemia in adult mice and young rats. We have investigated the potential neuroprotective effect of D-JNKI1 and the involvement of the JNK pathway in a neonatal rat model of cerebral hypoxia-ischemia. Seven-day-old rats underwent a permanent ligation of the right common carotid artery followed by 2h of hypoxia (8% oxygen). Treatment with D-JNKI1 (0.3mg/kg intraperitoneally) significantly reduced early calpain activation, late caspase-3 activation and, in the thalamus, autophagosome formation, indicating an involvement of JNK in different types of cell death: necrotic, apoptotic and autophagic. However the size of the lesion was unchanged. Further analysis showed that neonatal hypoxia-ischemia induced an immediate decrease in JNK phosphorylation (reflecting mainly P-JNK1) followed by a slow progressive increase (including P-JNK3 54kDa), whereas c-jun and c-fos expression were both strongly activated immediately after hypoxia-ischemia. In conclusion, unlike in adult ischemic models, JNK is only moderately activated after severe cerebral hypoxia-ischemia in neonatal rats and the observed positive effects of D-JNKI1 are insufficient to give neuroprotection. Thus, for perinatal asphyxia, D-JNKI1 can only be considered in association with other therapies.