881 resultados para mining algorithm
Resumo:
Strategies to Reduce Emissions from Deforestation and Degradation (REDD) are being pursued in numerous developing countries. Proponents contest that REDD mechanisms could deliver sustainable development by contributing to both environmental protection and economic development, particularly in poor forest communities. However, among the challenges to REDD, and natural resource management more generally, is the need to develop a comprehensive understanding of cross-sectoral linkages and addressing how they impact the pursuit of sustainable development. Drawing on an exploratory case-study of Ghana, this paper aims to outline the linkages between the forestry and minerals sectors. It is argued that contemporary debates give incommensurate attention to the reclamation of large-scale mine sites located in forest reserves, and neglect to consider more nuanced links which characterise the forestry-mining nexus in Ghana. A review of key stakeholders further elucidates the complex networks which characterise these linkages and highlights the important role of traditional authorities in governing across sectors. If the multiple roles of local resource users and traditional authorities continue to be neglected in policy mechanisms, schemes such as REDD will continue to fall short of achieving sustainable development.
Resumo:
This paper critically examines the impact of decentralization on contemporary and future governance arrangements in Ghana’s artisanal and small-scale mining (ASM) sector. The sector, while providing valuable employment in rural areas, is beleaguered by environmental and social issues. Proponents of decentralization argue that re-distributing decision-making authority leads to more responsive, transparent and efficient natural resource management. The analysis presented here, however, demonstrates how weak decentralization has exacerbated the complex, conflictual and clandestine nature of local resource politics surrounding ASM. If future decentralization reforms are going to reverse this trend and improve the governance of ASM in Ghana, then facilitating the participation of traditional authorities is imperative. It is argued that doing so requires addressing the reticence regarding the role of chiefs in resource governance; simply ironing out existing technical issues with decentralization reforms is unlikely to improve the social and environmental performance of ASM in the country. In light of the chronic resource management deficiencies in Ghana, epitomized in the ASM sector, fostering frank political debates on resource governance is becoming urgent.
Resumo:
This paper provides an interdisciplinary perspective on mine reclamation in forested areas of Ghana, a country characterised by conflicts between mining and forest conservation. A comparison was made between above ground biomass (AGB) and soil organic carbon (SOC) content from two reclaimed mine sites and adjacent undisturbed forest. Findings suggest that on decadal timescales, reclaimed mine sites contain approximately 40% of the total carbon and 10% the AGB carbon of undisturbed forest. This raises questions regarding the potential for decommissioning mine sites to provide forestry-based legacies. Such a move could deliver a host of benefits, including improving the longevity and success of reclamation, mitigating climate change and delivering corollary enumeration for local communities under carbon trading schemes. A discussion of the antecedents and challenges associated with establishing forest-legacies highlights the risk of neglecting the participation and heterogeneity of legitimate local representatives, which threatens the equity of potential benefits and sustainability of projects. Despite these risks, implementing pilot projects could help to address the lack of transparency and data which currently characterises mine reclamation.
Resumo:
Observations from the Heliospheric Imager (HI) instruments aboard the twin STEREO spacecraft have enabled the compilation of several catalogues of coronal mass ejections (CMEs), each characterizing the propagation of CMEs through the inner heliosphere. Three such catalogues are the Rutherford Appleton Laboratory (RAL)-HI event list, the Solar Stormwatch CME catalogue, and, presented here, the J-tracker catalogue. Each catalogue uses a different method to characterize the location of CME fronts in the HI images: manual identification by an expert, the statistical reduction of the manual identifications of many citizen scientists, and an automated algorithm. We provide a quantitative comparison of the differences between these catalogues and techniques, using 51 CMEs common to each catalogue. The time-elongation profiles of these CME fronts are compared, as are the estimates of the CME kinematics derived from application of three widely used single-spacecraft-fitting techniques. The J-tracker and RAL-HI profiles are most similar, while the Solar Stormwatch profiles display a small systematic offset. Evidence is presented that these differences arise because the RAL-HI and J-tracker profiles follow the sunward edge of CME density enhancements, while Solar Stormwatch profiles track closer to the antisunward (leading) edge. We demonstrate that the method used to produce the time-elongation profile typically introduces more variability into the kinematic estimates than differences between the various single-spacecraft-fitting techniques. This has implications for the repeatability and robustness of these types of analyses, arguably especially so in the context of space weather forecasting, where it could make the results strongly dependent on the methods used by the forecaster.
Resumo:
Sclera segmentation is shown to be of significant importance for eye and iris biometrics. However, sclera segmentation has not been extensively researched as a separate topic, but mainly summarized as a component of a broader task. This paper proposes a novel sclera segmentation algorithm for colour images which operates at pixel-level. Exploring various colour spaces, the proposed approach is robust to image noise and different gaze directions. The algorithm’s robustness is enhanced by a two-stage classifier. At the first stage, a set of simple classifiers is employed, while at the second stage, a neural network classifier operates on the probabilities’ space generated by the classifiers at stage 1. The proposed method was ranked the 1st in Sclera Segmentation Benchmarking Competition 2015, part of BTAS 2015, with a precision of 95.05% corresponding to a recall of 94.56%.
Resumo:
This work investigates the problem of feature selection in neuroimaging features from structural MRI brain images for the classification of subjects as healthy controls, suffering from Mild Cognitive Impairment or Alzheimer’s Disease. A Genetic Algorithm wrapper method for feature selection is adopted in conjunction with a Support Vector Machine classifier. In very large feature sets, feature selection is found to be redundant as the accuracy is often worsened when compared to an Support Vector Machine with no feature selection. However, when just the hippocampal subfields are used, feature selection shows a significant improvement of the classification accuracy. Three-class Support Vector Machines and two-class Support Vector Machines combined with weighted voting are also compared with the former and found more useful. The highest accuracy achieved at classifying the test data was 65.5% using a genetic algorithm for feature selection with a three-class Support Vector Machine classifier.
Resumo:
The personalised conditioning system (PCS) is widely studied. Potentially, it is able to reduce energy consumption while securing occupants’ thermal comfort requirements. It has been suggested that automatic optimised operation schemes for PCS should be introduced to avoid energy wastage and discomfort caused by inappropriate operation. In certain automatic operation schemes, personalised thermal sensation models are applied as key components to help in setting targets for PCS operation. In this research, a novel personal thermal sensation modelling method based on the C-Support Vector Classification (C-SVC) algorithm has been developed for PCS control. The personal thermal sensation modelling has been regarded as a classification problem. During the modelling process, the method ‘learns’ an occupant’s thermal preferences from his/her feedback, environmental parameters and personal physiological and behavioural factors. The modelling method has been verified by comparing the actual thermal sensation vote (TSV) with the modelled one based on 20 individual cases. Furthermore, the accuracy of each individual thermal sensation model has been compared with the outcomes of the PMV model. The results indicate that the modelling method presented in this paper is an effective tool to model personal thermal sensations and could be integrated within the PCS for optimised system operation and control.