904 resultados para milk yield and composition
Resumo:
This study investigated possible relationships between measurements of the somatotrophic axis in pre-pubertal dairy calves and subsequent milk yields. Endogenous growth hormone (GH) release was measured through a fed and fasted period in fifty 6-month-old Holstein-Friesian heifers and they were then challenged with growth hormone-releasing factor (GRF) to assess their GH release pattern. Insulin-like growth factor-I (IGF-I), insulin and glucose concentrations were measured in relation to time of feeding. Cows were subsequently monitored through their first three lactations to record peak and 305-day milk yields. In the first lactation, milk energy output for the first 120 days of lactation was also calculated. The mean 305-day milk yield increased from 7417 +/- 191 kg in the first lactation (n = 37) to 8749 +/- 252 kg in the third (n = 25). There were no significant relationships between any measures of GH secretion and peak or 305-day yield in any lactation. A highly significant positive relationship was established between the GH peak measured 10 min post-GRF challenge and 120-day milk energy values in the first lactation. This relationship was, however, only present in the subpopulation of 12 cows culled after one or two lactations and was absent in the 25 animals remaining for the third lactation. There were no significant relationships between pre-pubertal IGF-I and fed or fasted insulin or glucose concentrations and any subsequent measurement of yield. The usefulness of GH secretagogue challenges in calves as a predictive test for future milk production is thus limited but may have some bearing on nutrient partitioning and longevity. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Organic sweet maize consists of a new industrial crop product. Field experiment was conducted to determine the effects of cultural systems on growth, photosynthesis and yield components of sweet maize crop (Zea mays L. F-1 hybrid 'Midas'). A randomized complete block design was employed with four replicates per treatment (organic fertilization: cow manure (5, 10 and 20 t ha(-1)), poultry manure (5, 10 and 20 t ha(-1)) and barley mulch (5, 10 and 20 t ha(-1)), synthetic fertilizer (240 kg N ha(-1)): 21-0-0 and control). The lowest dry weight, height and leaf area index and sod organic matter were measured in the control treatment. Organic matter content was proportionate to the amount of manure applied. The control plots had the lowest yield (1593 kg ha(-1)) and the double rate cow manure plots the had,greatest one. (6104 kg ha(-1)). High correlation between sweet corn yield and organic matter was registered. Moreover, the lowest values of 1000-grain weight were obtained with control plot. The fertilizer plot gave values which were similar to the full rate cow manure treatment. The photosynthetic race of the untreated control was significantly lower than that of the other treatments. The phorosynthetic rate increased as poultry manure and barley mulch ram decreased and as cow manure increased. Furthermore the untreated control had the lowest stomatal conductance and chlorophyll content. Our results indicated that sweet corn growth and yield in the organic plots was significantly higher than those in the conventional plots.
Resumo:
Most current research into therapeutic approaches to muscle diseases involves the use of the mouse as an experimental model. Furthermore, a major strategy to alleviate myopathic symptoms through enhancing muscle growth and regeneration is to inhibit the action of myostatin (Mstn), a transforming growth factor-beta (TGF-beta) family member that inhibits muscle growth. Presently, however, no study has expanded the morphological analysis of mouse skeletal muscle beyond a few individual muscles of the distal hindlimb, through which broad conclusions have been based. Therefore, we have initially undertaken an expansive analysis of the skeletal musculature of the mouse forelimb and highlighted the species-specific differences between equivalent muscles of the rat, another prominently used experimental model. Subsequently, we examined the musculature of the forelimb in both young and old adult wild-type (mstn(+/+)) and myostatin null (mstn(-/-)) mice and assessed the potential beneficial and detrimental effects of myostatin deletion on muscle morphology and composition during the aging process. We showed that: (1) the forelimb muscles of the mouse display a more glycolytic phenotype than those of the rat; (2) in the absence of myostatin, the induced myofiber hyperplasia, hypertrophy, and glycolytic conversion all occur in a muscle-specific manner; and, importantly, (3) the loss of myostatin significantly alters the dynamics of postnatal muscle growth and impairs age-related oxidative myofiber conversion.
Resumo:
Extractability and recovery of cellulose from cell walls influences many industrial processes and also the utilisation of biomass for energy purposes. The utility of genetic manipulation of lignin has proven potential for optimising such processes and is also advantageous for the environment. Hemicelluloses, particularly secondary wall xylans, also influence the extractability of cellulose. UDP-glucuronate decarboxylase produces UDP-xylose, the precursor for xylans and the effect of its down-regulation on cell wall structure and cellulose extractability in transgenic tobacco has been investigated. Since there are a number of potential UDP-glucuronate decarboxylase genes, a 490 bp sequence of high similarity between members of the family, was chosen for general alteration of the expression of the gene family. Sense and antisense transgenic lines were analysed for enzyme activity using a modified and optimised electrophoretic assay, for enzyme levels by western blotting and for secondary cell wall composition. Some of the down-regulated antisense plants showed high glucose to xylose ratios in xylem walls due to less xylose-containing polymers, while arabinose and uronic acid contents, which could also have been affected by any change in UDP-xylose provision, were unchanged. The overall morphology and stem lignin content of the modified lines remained little changed compared with wild-type. However, there were some changes in vascular organisation and reduction of xylans in the secondary walls was confirmed by immunocytochemistry. Pulping analysis showed a decreased pulp yield and a higher Kappa number in some lines compared with controls, indicating that they were less delignified, although the level of residual alkali was reduced. Such traits probably indicate that lignin was less available for removal in a reduced background of xylans. However, the viscosity was higher in most antisense lines, meaning that the cellulose was less broken-down during the pulping process. This is one of the first studies of a directed manipulation of hemicellulose content on cellulose extractability and shows both positive and negative outcomes.
Resumo:
Extractability and recovery of cellulose from cell walls influences many industrial processes and also the utilisation of biomass for energy purposes. The utility of genetic manipulation of lignin has proven potential for optimising such processes and is also advantageous for the environment. Hemicelluloses, particularly secondary wall xylans, also influence the extractability of cellulose. UDP-glucuronate decarboxylase produces UDP-xylose, the precursor for xylans and the effect of its down-regulation on cell wall structure and cellulose extractability in transgenic tobacco has been investigated. Since there are a number of potential UDP-glucuronate decarboxylase genes, a 490 bp sequence of high similarity between members of the family, was chosen for general alteration of the expression of the gene family. Sense and antisense transgenic lines were analysed for enzyme activity using a modified and optimised electrophoretic assay, for enzyme levels by western blotting and for secondary cell wall composition. Some of the down-regulated antisense plants showed high glucose to xylose ratios in xylem walls due to less xylose-containing polymers, while arabinose and uronic acid contents, which could also have been affected by any change in UDP-xylose provision, were unchanged. The overall morphology and stem lignin content of the modified lines remained little changed compared with wild-type. However, there were some changes in vascular organisation and reduction of xylans in the secondary walls was confirmed by immunocytochemistry. Pulping analysis showed a decreased pulp yield and a higher Kappa number in some lines compared with controls, indicating that they were less delignified, although the level of residual alkali was reduced. Such traits probably indicate that lignin was less available for removal in a reduced background of xylans. However, the viscosity was higher in most antisense lines, meaning that the cellulose was less broken-down during the pulping process. This is one of the first studies of a directed manipulation of hemicellulose content on cellulose extractability and shows both positive and negative outcomes.
Resumo:
There has been increasing interest in health benefits of conjugated linoleic acid (CLA) based on findings with laboratory animals. Some human studies have also suggested health benefits of CLA, but because of the mixes used these could not be readily associated with a particular isomer of CLA. A recent study examined the separate effects of near-pure cis-9,trans-11 CLA (c9,t11 CLA) or trans-10,cis-12 CLA (t10,c12 CLA) on health-related outcomes in healthy young males. The CLA isomers were provided in capsules and at three doses (up to about 2.5 g/day) each for 8 weeks. Both c9,t11 and t10,c12 CLA were incorporated in a dose–response fashion into blood lipids and cells. At the doses and durations used, neither isomer of CLA affected bodyweight, body mass index or body composition, insulin sensitivity, immune function or markers of inflammation. However, at the doses and durations used, c9,t11 and t10,c12 CLA had opposing effects on blood lipid concentrations. Altered dairy cow-feeding practices were used to produce c9,t11 CLA-rich milk and, from this ultra heat-treated milk, cheese and butter were produced. The milk and the dairy products made from it had ninefold higher contents of c9,t11 CLA, higher contents of n-3 fatty acids and lower contents of total fat and of saturated fatty acids. They also contained much higher contents of trans-vaccenic acid (tVA). The modified dairy products were used in a 6-week controlled dietary intervention study in healthy middle-aged males. c9,t11 CLA and tVA were incorporated from dairy products into blood lipids and cells. Consumption of the CLA-rich (and tVA-rich) dairy products did not affect bodyweight or body mass index, insulin sensitivity or inflammatory markers. However, there were some detrimental effects on blood lipids. These effects may be due to tVA rather than to c9,t11 CLA, as they are consistent with the effects of trans fatty acids and not consistent with the effects of c9,t11 CLA identified in the earlier study with c9,t11 CLA in capsules.
Resumo:
This paper reviews the use of plant extracts as vegetable coagulants for cheesemaking. It covers the plants used as sources of coagulants, with a historical overview and particular emphasis on Cynara species. The genus Cynara L., its composition, milk clotting and proteolytic enzymes (cardosins) and their specificity towards peptide linkages are also described. Cheeses produced in the Iberian Peninsula using Cynara L. as coagulant are documented. Cynara L. is still the most used vegetable coagulant in cheesemaking, and also the most investigated. However, much work remains to be done to understand its action during cheese maturation and further characterization.
Resumo:
An evaluation of milk urea nitrogen (MUN) as a diagnostic of protein feeding in dairy cows was performed using mean treatment data (n = 306) from 50 production trials conducted in Finland (n = 48) and Sweden (n = 2). Data were used to assess the effects of diet composition and certain animal characteristics on MUN and to derive relationships between MUN and the efficiency of N utilization for milk production and urinary N excretion. Relationships were developed using regression analysis based on either models of fixed factors or using mixed models that account for between-experiment variations. Dietary crude protein (CP) content was the best single predictor of MUN and accounted for proportionately 0.778 of total variance [ MUN (mg/dL) = -14.2 + 0.17 x dietary CP content (g/kg dry matter)]. The proportion of variation explained by this relationship increased to 0.952 when a mixed model including the random effects of study was used, but both the intercept and slope remained unchanged. Use of rumen degradable CP concentration in excess of predicted requirements, or the ratio of dietary CP to metabolizable energy as single predictors, did not explain more of the variation in MUN (R-2 = 0.767 or 0.778, respectively) than dietary CP content. Inclusion of other dietary factors with dietary CP content in bivariate models resulted in only marginally better predictions of MUN (R-2 = 0.785 to 0.804). Closer relationships existed between MUN and dietary factors when nutrients (CP to metabolizable energy) were expressed as concentrations in the diet, rather than absolute intakes. Furthermore, both MUN and MUN secretion (g/d) provided more accurate predictions of urinary N excretion (R-2 = 0.787 and 0.835, respectively) than measurements of the efficiency of N utilization for milk production (R-2 = 0.769). It is concluded that dietary CP content is the most important nutritional factor influencing MUN, and that measurements of MUN can be utilized as a diagnostic of protein feeding in the dairy cow and used to predict urinary N excretion.
Resumo:
Cardiovascular disease (CVD), which includes coronary heart disease and stroke, remains the major killer in the EU, being responsible for 42% of total mortality. The amount and composition of dietary fat is arguably the most important dietary factor contributing to disease risk. A significant body of consistent evidence indicates that a decrease in dietary saturated fat:unsaturated (polyunsaturated + monounsaturated) ratio and an increased intake of long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) found in fish, is cardioprotective. Furthermore, although the evidence is currently less convincing, such a strategy is also likely to improve insulin sensitivity, the central metabolic defect in diabetes. Currently in the UK only 12% of men, 17% of women and 8% of children have an SFA intakes <10% of energy. The average intake of LC n-3 PUFA is <0.2 g/day, which is less than half the current conservative recommendation of a minimum of 0.45 g/day. Public health strategies to reverse these dietary fatty acid imbalances, aimed at educating and motivating the consumer and making affordable and acceptable food products with an ‘enhanced’ fatty acid profile more widely available, must remain a public health priority in the ‘fight’ against CVD.
Resumo:
Water-soluble cationic copolymers and hydrogels were synthesized by radical copolymerization of [2-(methacryloyloxy)ethyl]trimetilylammonium chloride (MADQUAT) and 2-hydroxyethylacrylate (HEA). The kinetics of copolymerization has been studied and the reactivity ratios were determined. It was found that MADQUAT exhibits higher reactivity in copolymerization. The complexation between linear MADQUAT-HEA and linear poly(acrylic acid) (PAA) has been studied in aqueous solutions at different pH. It results in the formation of insoluble polyelectrolyte complexes, whose composition and stability to aggregate depends on MADQUAT content in copolymers and pH. The hydrogels were synthesized by three-dimensional radical copolymerization of MADQUAT and HEA in the presence of a crosslinker. The effects of the feed mixture composition on yield and swelling properties of the hydrogels were studied. The interactions of these hydrogels with linear PAA result in formation of gel-polyelectrolyte complexes and contraction of the samples. It was found that the contraction depends on copolymer composition, PAA molecular weight, and solution pH. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Response surface methodology was used to study the effect of temperature, cutting time, and calcium chloride addition level on curd moisture content, whey fat losses, and curd yield. Coagulation and syneresis were continuously monitored using 2 optical sensors detecting light backscatter. The effect of the factors on the sensors’ response was also examined. Retention of fat during cheese making was found to be a function of cutting time and temperature, whereas curd yield was found to be a function of those 2 factors and the level of calcium chloride addition. The main effect of temperature on curd moisture was to increase the rate at which whey was expelled. Temperature and calcium chloride addition level were also found to affect the light backscatter profile during coagulation whereas the light backscatter profile during syneresis was a function of temperature and cutting time. The results of this study suggest that there is an optimum firmness at which the gel should be cut to achieve maximum retention of fat and an optimum curd moisture content to maximize product yield and quality. It was determined that to maximize curd yield and quality, it is necessary to maximize firmness while avoiding rapid coarsening of the gel network and microsyneresis. These results could contribute to the optimization of the cheese-making process.
Resumo:
This study has investigated the antioxidant capacity of different woods used in cooperage and the effect of the botanical species of wood on this capacity. Quercus robur and Castanea sativa were the species with the highest antioxidant capacity, due to their relatively high content of phenolic compounds. However, the phenolic content of Prunus avium samples was very low, also reflected in its antioxidant capacity. All measurements of antioxidant capacity were consistent with the content and composition of the phenolic compounds detected in the wood samples. The major contributors to the antioxidant capacity were identified as phenolic acids, including gallic, protocatechuic, p-coumaric and ellagic acid and all the ellagitannins, due to their characteristic structure.
Resumo:
A dynamic, mechanistic model of enteric fermentation was used to investigate the effect of type and quality of grass forage, dry matter intake (DMI) and proportion of concentrates in dietary dry matter (DM) on variation in methane (CH(4)) emission from enteric fermentation in dairy cows. The model represents substrate degradation and microbial fermentation processes in rumen and hindgut and, in particular, the effects of type of substrate fermented and of pH oil the production of individual volatile fatty acids and CH, as end-products of fermentation. Effects of type and quality of fresh and ensiled grass were evaluated by distinguishing two N fertilization rates of grassland and two stages of grass maturity. Simulation results indicated a strong impact of the amount and type of grass consumed oil CH(4) emission, with a maximum difference (across all forage types and all levels of DM 1) of 49 and 77% in g CH(4)/kg fat and protein corrected milk (FCM) for diets with a proportion of concentrates in dietary DM of 0.1 and 0.4, respectively (values ranging from 10.2 to 19.5 g CH(4)/kg FCM). The lowest emission was established for early Cut, high fertilized grass silage (GS) and high fertilized grass herbage (GH). The highest emission was found for late cut, low-fertilized GS. The N fertilization rate had the largest impact, followed by stage of grass maturity at harvesting and by the distinction between GH and GS. Emission expressed in g CH(4)/kg FCM declined oil average 14% with an increase of DMI from 14 to 18 kg/day for grass forage diets with a proportion of concentrates of 0.1, and on average 29% with an increase of DMI from 14 to 23 kg/day for diets with a proportion of concentrates of 0.4. Simulation results indicated that a high proportion of concentrates in dietary DM may lead to a further reduction of CH, emission per kg FCM mainly as a result of a higher DM I and milk yield, in comparison to low concentrate diets. Simulation results were evaluated against independent data obtained at three different laboratories in indirect calorimetry trials with COWS consuming GH mainly. The model predicted the average of observed values reasonably, but systematic deviations remained between individual laboratories and root mean squared prediction error was a proportion of 0.12 of the observed mean. Both observed and predicted emission expressed in g CH(4)/kg DM intake decreased upon an increase in dietary N:organic matter (OM) ratio. The model reproduced reasonably well the variation in measured CH, emission in cattle sheds oil Dutch dairy farms and indicated that oil average a fraction of 0.28 of the total emissions must have originated from manure under these circumstances.
Resumo:
The rheological, emulsification and certain physicochemical properties of purified exopolysaccharides (EPS) of Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205 were studied and compared with those of guar gum and xanthan gum. The two strains were grown in skim milk supplemented with 1.5% (w/v) casein hydrolysate at 37 ◦C for 24 h; they both produced heteropolysaccharides with different molecular mass and composition. The carbohydrate content of both polymers was more than 92% and no protein was detected. The EPS of B. longum subsp. infantis CCUG 52486 showed highly branched entangled porous structure under scanning electron microscopy. Higher intrinsic viscosity was observed for the EPS of B. longum subsp. infantis CCUG 52486 compared to the EPS of B. infantis NCIMB 702205 and guar gum. Both polymers showed pseudoplastic non-Newtonian fluid behaviour in an aqueous solution. The EPS of B. infantis NCIMB 702205 and B. longum subsp. infantis CCUG 52486 produced more stable emulsions with orange oil, sunflower seed oil, coconut oil and xylene compared to guar and xanthan gum. The EPS of B. longum subsp. infantis CCUG 52486 is the most promising one for applications in the food industry, as it had higher intrinsic viscosity, higher apparent viscosity in aqueous solution, porous dense entangled structure and good emulsification activity.
Resumo:
Cross-bred cow adoption is an important and potent policy variable precipitating subsistence household entry into emerging milk markets. This paper focuses on the problem of designing policies that encourage and sustain milkmarket expansion among a sample of subsistence households in the Ethiopian highlands. In this context it is desirable to measure households’ ‘proximity’ to market in terms of the level of deficiency of essential inputs. This problem is compounded by four factors. One is the existence of cross-bred cow numbers (count data) as an important, endogenous decision by the household; second is the lack of a multivariate generalization of the Poisson regression model; third is the censored nature of the milk sales data (sales from non-participating households are, essentially, censored at zero); and fourth is an important simultaneity that exists between the decision to adopt a cross-bred cow, the decision about how much milk to produce, the decision about how much milk to consume and the decision to market that milk which is produced but not consumed internally by the household. Routine application of Gibbs sampling and data augmentation overcome these problems in a relatively straightforward manner. We model the count data from two sites close to Addis Ababa in a latent, categorical-variable setting with known bin boundaries. The single-equation model is then extended to a multivariate system that accommodates the covariance between crossbred-cow adoption, milk-output, and milk-sales equations. The latent-variable procedure proves tractable in extension to the multivariate setting and provides important information for policy formation in emerging-market settings