953 resultados para meta 1 expression


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gene therapy for patients with hemoglobin disorders has been hampered by the inability of retrovirus vectors to transfer globin genes and their cis-acting regulatory sequences into hematopoietic stem cells without rearrangement. In addition, the expression from intact globin gene vectors has been variable in red blood cells due to position effects and retrovirus silencing. We hypothesized that by substituting the globin gene promoter for the promoter of another gene expressed in red blood cells, we could generate stable retrovirus vectors that would express globin at sufficient levels to treat hemoglobinopathies. Recently, we have shown that the human ankyrin (Ank) gene promoter directs position-independent, copy number-dependent expression of a linked γ-globin gene in transgenic mice. We inserted the Ank/Aγ-globin gene into retrovirus vectors that could transfer one or two copies of the Ank/Aγ-globin gene to target cells. Both vectors were stable, transferring only intact proviral sequences into primary mouse hematopoietic stem cells. Expression of Ank/Aγ-globin mRNA in mature red blood cells was 3% (single copy) and 8% (double copy) of the level of mouse α-globin mRNA. We conclude that these novel retrovirus vectors may be valuable for treating a variety of red cell disorders by gene replacement therapy including severe β-thalassemia if the level of expression can be further increased.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have reported a deficiency of a 91-kDa glycoprotein component of the phagocyte NADPH oxidase (gp91phox) in neutrophils, monocytes, and B lymphocytes of a patient with X chromosome-linked chronic granulomatous disease. Sequence analysis of his gp91phox gene revealed a single-base mutation (C → T) at position −53. Electrophoresis mobility-shift assays showed that both PU.1 and hematopoietic-associated factor 1 (HAF-1) bound to the inverted PU.1 consensus sequence centered at position −53 of the gp91phox promoter, and the mutation at position −53 strongly inhibited the binding of both factors. It was also indicated that a mutation at position −50 strongly inhibited PU.1 binding but hardly inhibited HAF-1 binding, and a mutation at position −56 had an opposite binding specificity for these factors. In transient expression assay using HEL cells, which express PU.1 and HAF-1, the mutations at positions −53 and −50 significantly reduced the gp91phox promoter activity; however, the mutation at position −56 did not affect the promoter activity. In transient cotransfection study, PU.1 dramatically activated the gp91phox promoter in Jurkat T cells, which originally contained HAF-1 but not PU.1. In addition, the single-base mutation (C → T) at position −52 that was identified in a patient with chronic granulomatous disease inhibited the binding of PU.1 to the promoter. We therefore conclude that PU.1 is an essential activator for the expression of gp91phox gene in human neutrophils, monocytes, and B lymphocytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the “selective” cholesteryl ester (CE) uptake process, surface-associated lipoproteins [high density lipoprotein (HDL) and low density lipoprotein] are trapped in the space formed between closely apposed surface microvilli (microvillar channels) in hormone-stimulated steroidogenic cells. This is the same location where an HDL receptor (SR-BI) is found. In the current study, we sought to understand the relationship between SR-BI and selective CE uptake in a heterologous insect cell system. Sf9 (Spodoptera frugiperda) cells overexpressing recombinant SR-BI were examined for (i) SR-BI protein by Western blot analysis and light or electron immunomicroscopy, and (ii) selective lipoprotein CE uptake by the use of radiolabeled or fluorescent (BODIPY-CE)-labeled HDL. Noninfected or infected control Sf9 cells do not express SR-BI, show microvillar channels, or internalize CEs. An unexpected finding was the induction of a complex channel system in Sf9 cells expressing SR-BI. SR-BI-expressing cells showed many cell surface double-membraned channels, immunogold SR-BI, apolipoprotein (HDL) labeling of the channels, and high levels of selective HDL-CE uptake. Thus, double-membraned channels can be induced by expression of recombinant SR-BI in a heterologous system, and these specialized structures facilitate both the binding of HDL and selective HDL-CE uptake.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The functional characteristics and cellular localization of the γaminobutyric acid (GABA) ρ1 receptor and its nonfunctional isoform ρ1Δ450 were investigated by expressing them as gene fusions with the enhanced version of the green fluorescent protein (GFP). Oocytes injected with ρ1-GFP had receptors that gated chloride channels when activated by GABA. The functional characteristics of these receptors were the same as for those of wild-type ρ1 receptors. Fluorescence, because of the chimeric receptors expressed, was over the whole oocyte but was more intense near the cell surface and more abundant in the animal hemisphere. Similar to the wild type, ρ1Δ450-GFP did not lead to the expression of functional GABA receptors, and injected oocytes failed to generate currents even after exposure to high concentrations of GABA. Nonetheless, the fluorescence displayed by oocytes expressing ρ1Δ450-GFP was distributed similarly to that of ρ1-GFP. Mammalian cells transfected with the ρ1-GFP or ρ1Δ450-GFP constructs showed mostly intracellularly distributed fluorescence in confocal microscope images. A sparse localization of fluorescence was observed in the plasma membrane regardless of the cell line used. We conclude that ρ1Δ450 is expressed and transported close to, and perhaps incorporated into, the plasma membrane. Thus, ρ1- and ρ1Δ450-GFP fusions provide a powerful tool to visualize the traffic of GABA type C receptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Muscle tissue is the major site for insulin-stimulated glucose uptake in vivo, due primarily to the recruitment of the insulin-sensitive glucose transporter (GLUT4) to the plasma membrane. Surprisingly, virtually all cultured muscle cells express little or no GLUT4. We show here that adenovirus-mediated expression of the transcriptional coactivator PGC-1, which is expressed in muscle in vivo but is also deficient in cultured muscle cells, causes the total restoration of GLUT4 mRNA levels to those observed in vivo. This increased GLUT4 expression correlates with a 3-fold increase in glucose transport, although much of this protein is transported to the plasma membrane even in the absence of insulin. PGC-1 mediates this increased GLUT4 expression, in large part, by binding to and coactivating the muscle-selective transcription factor MEF2C. These data indicate that PGC-1 is a coactivator of MEF2C and can control the level of endogenous GLUT4 gene expression in muscle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the expression patterns of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes in carnation (Dianthus caryophyllus cv White Sim) under conditions previously shown to induce ethylene biosynthesis. These included treatment of flowers with 2,4-dichlorophenoxyacetic acid, ethylene, LiCl, cycloheximide, and natural and pollination-induced flower senescence. Accumulation of ACC synthase transcripts in leaves following mechanical wounding and treatment with 2,4-dichlorophenoxyacetic acid or LiCl was also determined by RNA gel-blot analysis. As in other species, the carnation ACC synthase genes were found to be differentially regulated in a tissue-specific manner. DCACS2 and DCACS3 were preferentially expressed in styles, whereas DCACS1 mRNA was most abundant in petals. Cycloheximide did not induce increased accumulation of ACC synthase transcripts in carnation flowers, whereas the expression of ACC synthase was up-regulated by auxin, ethylene, LiCl, pollination, and senescence in a floral-organ-specific manner. Expression of the three ACC synthases identified in carnation did not correspond to elevated ethylene biosynthesis from wounded or auxin-treated leaves, and there are likely additional members of the carnation ACC synthase gene family responsible for ACC synthase expression in vegetative tissues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

p75/AIRM-1 is a recently identified inhibitory receptor expressed by natural killer and myeloid cells displaying high homology with CD33. Crosslinking of p75/AIRM-1 or CD33 has been shown to sharply inhibit the in vitro proliferation of both normal myeloid cells and chronic myeloid leukemias. In this study, we analyzed acute myeloid leukemic cells for the expression of p75/AIRM-1. p75/AIRM-1 marked the M5 (11/12) and M4 (2/2) but not the M1, M2, and M3 subtypes according to the French–American–British classification. Cell samples from 12 acute myeloid leukemias were cultured in the presence of granulocyte/macrophage colony-stimulating factor. Addition to these cultures of anti-CD33 antibody resulted in ≈70% inhibition of cell proliferation as assessed by [3H]thymidine uptake or by the recovery of viable cells. Anti-p75/AIRM-1 antibody exerted a strong inhibitory effect only in two cases characterized by a high in vitro proliferation rate. After crosslinking of CD33 (but not of p75/AIRM-1), leukemic cells bound Annexin V and displayed changes in their light-scattering properties and nucleosomal DNA fragmentation, thus providing evidence for the occurrence of apoptotic cell death. Remarkably, when anti-CD33 antibody was used in combination with concentrations of etoposide insufficient to induce apoptosis when used alone, a synergistic effect could be detected in the induction of leukemic cell death. These studies provide the rationale for new therapeutic approaches in myeloid leukemias by using both chemotherapy and apoptosis-inducing mAbs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the feedback regulation of ethylene biosynthesis in tomato (Lycopersicon esculentum) fruit with respect to the transition from system 1 to system 2 ethylene production. The abundance of LE-ACS2, LE-ACS4, and NR mRNAs increased in the ripening fruit concomitant with a burst in ethylene production. These increases in mRNAs with ripening were prevented to a large extent by treatment with 1-methylcyclopropene (MCP), an ethylene action inhibitor. Transcripts for the LE-ACS6 gene, which accumulated in preclimacteric fruit but not in untreated ripening fruit, did accumulate in ripening fruit treated with MCP. Treatment of young fruit with propylene prevented the accumulation of transcripts for this gene. LE-ACS1A, LE-ACS3, and TAE1 genes were expressed constitutively in the fruit throughout development and ripening irrespective of whether the fruit was treated with MCP or propylene. The transcripts for LE-ACO1 and LE-ACO4 genes already existed in preclimacteric fruit and increased greatly when ripening commenced. These increases in LE-ACO mRNA with ripening were also prevented by treatment with MCP. The results suggest that in tomato fruit the preclimacteric system 1 ethylene is possibly mediated via constitutively expressed LE-ACS1A and LE-ACS3 and negatively feedback-regulated LE-ACS6 genes with preexisting LE-ACO1 and LE-ACO4 mRNAs. At the onset of the climacteric stage, it shifts to system 2 ethylene, with a large accumulation of LE-ACS2, LE-ACS4, LE-ACO1, and LE-ACO4 mRNAs as a result of a positive feedback regulation. This transition from system 1 to system 2 ethylene production might be related to the accumulated level of NR mRNA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A cDNA (Cel1) encoding an endo-1,4-β-glucanase (EGase) was isolated from ripe fruit of strawberry (Fragaria × ananassa). The deduced protein of 496 amino acids contains a presumptive signal sequence, a common feature of cell wall-localized EGases, and one potential N-glycosylation site. Southern- blot analysis of genomic DNA from F. × ananassa, an octoploid species, and that from the diploid species Fragaria vesca indicated that the Cel1 gene is a member of a divergent multigene family. In fruit, Cel1 mRNA was first detected at the white stage of development, and at the onset of ripening, coincident with anthocyanin accumulation, Cel1 mRNA abundance increased dramatically and remained high throughout ripening and subsequent fruit deterioration. In all other tissues examined, Cel1 expression was invariably absent. Antibodies raised to Cel1 protein detected a protein of 62 kD only in ripening fruit. Upon deachenation of young white fruit to remove the source of endogenous auxins, ripening, as visualized by anthocyanin accumulation, and Cel1 mRNA accumulation were both accelerated. Conversely, auxin treatment of white fruit repressed accumulation of both Cel1 mRNA and ripening. These results indicate that strawberry Cel1 is a ripening-specific and auxin-repressed EGase, which is regulated during ripening by a decline in auxin levels originating from the achenes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The spatial and temporal expression patterns of metallothionein (MT) isoforms MT1a and MT2a were investigated in vegetative and reproductive tissues of untreated and copper-treated Arabidopsis by in situ hybridization and by northern blotting. In control plants, MT1a mRNA was localized in leaf trichomes and in the vascular tissue in leaves, roots, flowers, and germinating embryos. In copper-treated plants, MT1a expression was also observed in the leaf mesophyll and in vascular tissue of developing siliques and seeds. In contrast, MT2a was expressed primarily in the trichomes of both untreated and copper-treated plants. In copper-treated plants, MT2a mRNA was also expressed in siliques. Northern-hybridization studies performed on developing seedlings and leaves showed temporal variations of MT1a gene expression but not of MT2a expression. The possible implications of these findings for the cellular roles of MTs in plants are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The accumulation of soluble carbohydrates resulting from growth under elevated CO2 may potentially signal the repression of gene activity for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcS). To test this hypothesis we grew rice (Oryza sativa L.) under ambient (350 μL L−1) and high (700 μL L−1) CO2 in outdoor, sunlit, environment-controlled chambers and performed a cross-switching of growth CO2 concentration at the late-vegetative phase. Within 24 h, plants switched to high CO2 showed a 15% and 23% decrease in rbcS mRNA, whereas plants switched to ambient CO2 increased 27% and 11% in expanding and mature leaves, respectively. Ribulose-1,5-bisphosphate carboxylase/oxygenase total activity and protein content 8 d after the switch increased up to 27% and 20%, respectively, in plants switched to ambient CO2, but changed very little in plants switched to high CO2. Plants maintained at high CO2 showed greater carbohydrate pool sizes and lower rbcS transcript levels than plants kept at ambient CO2. However, after switching growth CO2 concentration, there was not a simple correlation between carbohydrate and rbcS transcript levels. We conclude that although carbohydrates may be important in the regulation of rbcS expression, changes in total pool size alone could not predict the rapid changes in expression that we observed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We isolated two tomato (Lycopersicon esculentum) cDNA clones, tomPRO1 and tomPRO2, specifying Δ1-pyrroline-5-carboxylate synthetase (P5CS), the first enzyme of proline (Pro) biosynthesis. tomPRO1 is unusual because it resembles prokaryotic polycistronic operons (M.G. García-Ríos, T. Fujita, P.C. LaRosa, R.D. Locy, J.M. Clithero, R.A. Bressan, L.N. Csonka [1997] Proc Natl Acad Sci USA 94: 8249–8254), whereas tomPRO2 encodes a full-length P5CS. We analyzed the accumulation of Pro and the tomPRO1 and tomPRO2 messages in response to NaCl stress and developmental signals. Treatment with 200 mm NaCl resulted in a >60-fold increase in Pro levels in roots and leaves. However, there was a <3-fold increase in the accumulation of the tomPRO2 message and no detectable induction in the level of the tomPRO1 message in response to NaCl stress. Although pollen contained approximately 100-fold higher levels of Pro than other plant tissues, there was no detectable increase in the level of either message in pollen. We conclude that transcriptional regulation of these genes for P5CS is probably not important for the osmotic or pollen-specific regulation of Pro synthesis in tomato. Using restriction fragment-length polymorphism mapping, we determined the locations of tomPRO1 and tomPRO2 loci in the tomato nuclear genome. Sequence comparison suggested that tomPRO1 is similar to prokaryotic P5CS loci, whereas tomPRO2 is closely related to other eukaryotic P5CS genes.