864 resultados para membrane-oxygenation
Resumo:
Bullous pemphigoid (BP) is an autoimmune subepidermal blistering disease of the skin associated with IgG autoantibodies to BP180 and BP230, while mucous membrane pemphigoid (MMP) comprises a heterogeneous group of autoimmune blistering diseases characterized by a predominant mucous membrane involvement and scarring tendency associated with an autoantibody response to various autoantigens, including BP180. While the pathogenicity of IgG autoantibodies to BP180 has been demonstrated in BP, the role of IgE autoantibodies in mediating tissue damage in BP and MMP is unclear.
Resumo:
The eukaryotic cell membrane possesses numerous complex functions, which are essential for life. At this, the composition and the structure of the lipid bilayer are of particular importance. Polyunsaturated fatty acids may modulate the physical properties of biological membranes via alteration of membrane lipid composition affecting numerous physiological processes, e.g. in the immune system. In this systematic study we present fatty acid and peptide profiles of cell membrane and membrane rafts of murine macrophages that have been supplemented with saturated fatty acids as well as PUFAs from the n-3, the n-6 and the n-9 family. Using fatty acid composition analysis and mass spectrometry-based peptidome profiling we found that PUFAs from both the n-3 and the n-6 family have an impact on lipid and protein composition of plasma membrane and membrane rafts in a similar manner. In addition, we found a relation between the number of bis-allyl-methylene positions of the PUFA added and the unsaturation index of plasma membrane as well as membrane rafts of supplemented cells. With regard to the proposed significance of lipid microdomains for disease development and treatment our study will help to achieve a targeted dietary modulation of immune cell lipid bilayers.
Resumo:
The pathway of copper entry into Escherichia coli is still unknown. In an attempt to shed light on this process, a lux-based biosensor was utilized to monitor intracellular copper levels in situ. From a transposon-mutagenized library, strains were selected in which copper entry into cells was reduced, apparent as clones with reduced luminescence when grown in the presence of copper (low-glowers). One low-glower had a transposon insertion in the comR gene, which encodes a TetR-like transcriptional regulator. The mutant strain could be complemented by the comR gene on a plasmid, restoring luminescence to wild-type levels. ComR did not regulate its own expression, but was required for copper-induction of the neighboring, divergently transcribed comC gene, as shown by real-time quantitative PCR and with a promoter-lux fusion. The purified ComR regulator bound to the promoter region of the comC gene in vitro and was released by copper. By membrane fractionation, ComC was shown to be localized in the outer membrane. When grown in the presence of copper, ∆comC cells had higher periplasmic and cytoplasmic copper levels, compared to the wild-type, as assessed by the activation of the periplasmic CusRS sensor and the cytoplasmic CueR sensor, respectively. Thus, ComC is an outer membrane protein which lowers the permeability of the outer membrane to copper. The expression of ComC is controlled by ComR, a novel, TetR-like copper-responsive repressor.
Resumo:
The calculation of projection structures (PSs) from Protein Data Bank (PDB)-coordinate files of membrane proteins is not well-established. Reports on such attempts exist but are rare. In addition, the different procedures are barely described and thus difficult if not impossible to reproduce. Here we present a simple, fast and well-documented method for the calculation and visualization of PSs from PDB-coordinate files of membrane proteins: the projection structure visualization (PSV)-method. The PSV-method was successfully validated using the PS of aquaporin-1 (AQP1) from 2D crystals and cryo-transmission electron microscopy, and the PDB-coordinate file of AQP1 determined from 3D crystals and X-ray crystallography. Besides AQP1, which is a relatively rigid protein, we also studied a flexible membrane transport protein, i.e. the L-arginine/agmatine antiporter AdiC. Comparison of PSs calculated from the existing PDB-coordinate files of substrate-free and L-arginine-bound AdiC indicated that conformational changes are detected in projection. Importantly, structural differences were found between the PSV-method calculated PSs of the detergent-solubilized AdiC proteins and the PS from cryo-TEM of membrane-embedded AdiC. These differences are particularly exciting since they may reflect a different conformation of AdiC induced by the lateral pressure in the lipid bilayer.
Resumo:
In this chapter the methodological bases are provided to achieve subnanometer resolution on two-dimensional (2D) membrane protein crystals by atomic force microscopy (AFM). This is outlined in detail with the example of AFM studies of the outer membrane protein F (OmpF) from the bacterium Escherichia coli (E. coli). We describe in detail the high-resolution imaging of 2D OmpF crystals in aqueous solution and under near-physiological conditions. The topographs of OmpF, and stylus effects and artifacts encountered when imaging by AFM are discussed.
Resumo:
Color light therapy is a therapeutic method in complementary medicine. In color therapy, light of two contrasting colors is often applied in a sequential order. The aim of this study was to investigate possible physiological effects, i.e., changes in the blood volume and oxygenation in the brain and calf muscle of healthy subjects who were exposed to red and blue light in sequential order. The hypothesis was that if a subject is first exposed to blue and then red light, the effect of the red light will be enhanced due to the contrastingly different characteristics of the two colors. The same was expected for blue light, if first exposing a subject to red and then to blue light. Twelve healthy volunteers (six male, six female) were measured twice on two different days by near-infrared spectroscopy during exposure to colored light. Two sequences of colored light were applied in a controlled, randomized, crossover design: first blue, then red, and vice versa. For the brain and muscle, the results showed no significant differences in blood volume and oxygenation between the two sequences, and a high interindividual physiological variability. Thus, the hypothesis had to be rejected. Comparing these data to results from a previous study, where subjects were exposed to blue and red light without sequential color changes, shows that the results of the current study appear to be similar to those of red light exposure. This may indicate that the exposure to red light was preponderant and thus effects of blue light were outweighed.
Resumo:
Arts speech therapy (AST) is a therapeutic method within complementary medicine and has been practiced for decades for various medical conditions. It comprises listening and the recitation of different forms of speech exercises under the guidance of a licensed speech therapist. The aim of our study was to noninvasively investigate whether different types of recitation influence hemodynamics and oxygenation in the brain and skeletal leg muscle using near-infrared spectroscopy (NIRS). Seventeen healthy volunteers (eight men and nine women, mean age ± standard deviation 35.6 ± 12.7 years) were enrolled in the study. Each subject was measured three times on different days with the different types of recitation: hexameter, alliteration, and prose verse. Before, during, and after recitation, relative concentration changes of oxyhemoglobin (Δ[O2Hb]), deoxyhemoglobin (Δ[HHb]), total hemoglobin (Δ[tHb]), and tissue oxygenation saturation (StO2) were measured in the brain and skeletal leg muscle using a NIRS device. The study was performed with a randomized crossover design. Significant concentration changes were found during recitation of all verses, with mainly a decrease in Δ[O2Hb] and ΔStO2 in the brain, and an increase in Δ[O2Hb] and Δ[tHb] in the leg muscle during recitation. After the recitations, significant changes were mainly increases of Δ[HHb] and Δ[tHb] in the calf muscle. The Mayer wave spectral power (MWP) was also significantly affected, i.e., mainly the MWP of the Δ[O2Hb] and Δ[tHb] increased in the brain during recitation of hexameter and prose verse. The changes in MWP were also significantly different between hexameter and alliteration, and hexameter and prose. Possible physiological explanations for these changes are discussed. A probable reason is a different effect of recitations on the sympathetic nervous system. In conclusion, these changes show that AST has relevant effects on the hemodynamics and oxygenation of the brain and muscle.
Resumo:
Andersen-Tawil syndrome (ATS) due to Kir2.1mutations typically manifests as periodic paralysis, cardiac arrhythmias and developmental abnormalities but is often difficult to diagnose clinically. This study was undertaken to determine whether sarcolemmal dysfunction could be identified with muscle velocity recovery cycles (MVRCs).