939 resultados para marine spatial planning
Resumo:
This paper presents a spatial econometrics analysis for the number of road accidents with victims in the smallest administrative divisions of Lisbon, considering as a baseline a log-Poisson model for environmental factors. Spatial correlation on data is investigated for data alone and for the residuals of the baseline model without and with spatial-autocorrelated and spatial-lagged terms. In all the cases no spatial autocorrelation was detected.
Resumo:
OBJECTIVE To analyze spatial changes in the risk of AIDS and the relationship between AIDS incidence and socioeconomic variables in the state of Rondonia, Amazon region. METHODS A spatial, population case-control study in Rondonia, Brazil, based on 1,780 cases reported to the Epidemiological Surveillance System and controls based on demographic data from 1987 to 2006. The cases were grouped into five consecutive four-year periods. A generalized additive model was adjusted to the data; the dependent variable was the status of the individuals (case or control), and the independent variables were a bi-dimensional spline of the geographic coordinates and some municipality-level socioeconomic variables. The observed values of the Moran’s I test were compared to a reference distribution of values generated under conditions of spatial randomness. RESULTS AIDS risk shows a marked spatial and temporal pattern. The disease incidence is related to socioeconomic variables at the municipal level in Rondônia, such as urbanization and human capital. The highest incidence rates of AIDS are in municipalities along the BR-364 highway and calculations of the Moran’s I test show positive spatial correlation associated with proximity of the municipality to the highway in the third and fourth periods (p = 0.05). CONCLUSIONS Incidence of the disease is higher in municipalities of greater economic wealth and urbanization, and in those municipalities bisected by Rondônia’s main roads. The rapid development associated with the opening up of once remote regions may be accompanied by an increase in these risks to health.
Resumo:
Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.
Resumo:
Recent studies suggest that sand can serve as a vehicle for exposure of humans to pathogens at beach sites, resulting in increased health risks. Sampling for microorganisms in sand should therefore be considered for inclusion in regulatory programmes aimed at protecting recreational beach users from infectious disease. Here, we review the literature on pathogen levels in beach sand, and their potential for affecting human health. In an effort to provide specific recommendations for sand sampling programmes, we outline published guidelines for beach monitoring programmes, which are currently focused exclusively on measuring microbial levels in water. We also provide background on spatial distribution and temporal characteristics of microbes in sand, as these factors influence sampling programmes. First steps toward establishing a sand sampling programme include identifying appropriate beach sites and use of initial sanitary assessments to refine site selection. A tiered approach is recommended for monitoring. This approach would include the analysis of samples from many sites for faecal indicator organisms and other conventional analytes, while testing for specific pathogens and unconventional indicators is reserved for high-risk sites. Given the diversity of microbes found in sand, studies are urgently needed to identify the most significant aetiological agent of disease and to relate microbial measurements in sand to human health risk.
Resumo:
OBJECTIVE To analyze the spatial distribution of homicide mortality in the state of Bahia, Northeastern Brazil. METHODS Ecological study of the 15 to 39-year old male population in the state of Bahia in the period 1996-2010. Data from the Mortality Information System, relating to homicide (X85-Y09) and population estimates from the Brazilian Institute of Geography and Statistics were used. The existence of spatial correlation, the presence of clusters and critical areas of the event studied were analyzed using Moran’s I Global and Local indices. RESULTS A non-random spatial pattern was observed in the distribution of rates, as was the presence of three clusters, the first in the north health district, the second in the eastern region, and the third cluster included townships in the south and the far south of Bahia. CONCLUSIONS The homicide mortality in the three different critical areas requires further studies that consider the socioeconomic, cultural and environmental characteristics in order to guide specific preventive and interventionist practices.
Resumo:
OBJECTIVE To analyze temporal trends and distribution patterns of unsafe abortion in Brazil. METHODS Ecological study based on records of hospital admissions of women due to abortion in Brazil between 1996 and 2012, obtained from the Hospital Information System of the Ministry of Health. We estimated the number of unsafe abortions stratified by place of residence, using indirect estimate techniques. The following indicators were calculated: ratio of unsafe abortions/100 live births and rate of unsafe abortion/1,000 women of childbearing age. We analyzed temporal trends through polynomial regression and spatial distribution using municipalities as the unit of analysis. RESULTS In the study period, a total of 4,007,327 hospital admissions due to abortions were recorded in Brazil. We estimated a total of 16,905,911 unsafe abortions in the country, with an annual mean of 994,465 abortions (mean unsafe abortion rate: 17.0 abortions/1,000 women of childbearing age; ratio of unsafe abortions: 33.2/100 live births). Unsafe abortion presented a declining trend at national level (R2: 94.0%, p < 0.001), with unequal patterns between regions. There was a significant reduction of unsafe abortion in the Northeast (R2: 93.0%, p < 0.001), Southeast (R2: 92.0%, p < 0.001) and Central-West regions (R2: 64.0%, p < 0.001), whereas the North (R2: 39.0%, p = 0.030) presented an increase, and the South (R2: 22.0%, p = 0.340) remained stable. Spatial analysis identified the presence of clusters of municipalities with high values for unsafe abortion, located mainly in states of the North, Northeast and Southeast Regions. CONCLUSIONS Unsafe abortion remains a public health problem in Brazil, with marked regional differences, mainly concentrated in the socioeconomically disadvantaged regions of the country. Qualification of attention to women’s health, especially to reproductive aspects and attention to pre- and post-abortion processes, are necessary and urgent strategies to be implemented in the country.
Resumo:
OBJECTIVE To analyze the temporal evolution of maternal mortality and its spatial distribution.METHODS Ecological study with a sample made up of 845 maternal deaths in women between 10 and 49 years, registered from 1999 to 2008 in the state of Rio Grande do Sul, Southern Brazil. Data were obtained from Information System on Mortality of Ministry of Health. The maternal mortality ratio and the specific maternal mortality ratio were calculated from records, and analyzed by the Poisson regression model. In the spatial distribution, three maps of the state were built with the rates in the geographical macro-regions, in 1999, 2003, and 2008.RESULTS There was an increase of 2.0% in the period of ten years (95%CI 1.00;1.04; p = 0.01), with no significant change in the magnitude of the maternal mortality ratio. The Serra macro-region presented the highest maternal mortality ratio (1.15, 95%CI 1.08;1.21; p < 0.001). Most deaths in Rio Grande do Sul were of white women over 40 years, with a lower level of education. The time of delivery/abortion and postpartum are times of increased maternal risk, with a greater negative impact of direct causes such as hypertension and bleeding.CONCLUSIONS The lack of improvement in maternal mortality ratio indicates that public policies had no impact on women’s reproductive and maternal health. It is needed to qualify the attention to women’s health, especially in the prenatal period, seeking to identify and prevent risk factors, as a strategy of reducing maternal death.
Resumo:
OBJECTIVE To analyze the methodology used for assessing the spatial distribution of specialized cardiac care units. METHODS A modeling and simulation method was adopted for the practical application of cardiac care service in the state of Santa Catarina, Southern Brazil, using the p-median model. As the state is divided into 21 health care regions, a methodology which suggests an arrangement of eight intermediate cardiac care units was analyzed, comparing the results obtained using data from 1996 and 2012. RESULTS Results obtained using data from 2012 indicated significant changes in the state, particularly in relation to the increased population density in the coastal regions. The current study provided a satisfactory response, indicated by the homogeneity of the results regarding the location of the intermediate cardiac care units and their respective regional administrations, thereby decreasing the average distance traveled by users to health care units, located in higher population density areas. The validity of the model was corroborated through the analysis of the allocation of the median vertices proposed in 1996 and 2012. CONCLUSIONS The current spatial distribution of specialized cardiac care units is more homogeneous and reflects the demographic changes that have occurred in the state over the last 17 years. The comparison between the two simulations and the current configuration showed the validity of the proposed model as an aid in decision making for system expansion.
Resumo:
The trajectory planning of redundant robots through the pseudoinverse control leads to undesirable drift in the joint space. This paper presents a new technique to solve the inverse kinematics problem of redundant manipulators, which uses a fractional differential of order α to control the joint positions. Two performance measures are defined to examine the strength and weakness of the proposed method. The positional error index measures the precision of the manipulator's end-effector at the target position. The repeatability performance index is adopted to evaluate if the joint positions are repetitive when the manipulator execute repetitive trajectories in the operational workspace. Redundant and hyper-redundant planar manipulators reveal that it is possible to choose in a large range of possible values of α in order to get repetitive trajectories in the joint space.
Resumo:
Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.
Resumo:
In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions.
Resumo:
MSC Dissertation in Computer Engineering
Resumo:
OBJECTIVE Identify spatial distribution patterns of the proportion of nonadherence to tuberculosis treatment and its associated factors.METHODS We conducted an ecological study based on secondary and primary data from municipalities of the metropolitan area of Buenos Aires, Argentina. An exploratory analysis of the characteristics of the area and the distributions of the cases included in the sample (proportion of nonadherence) was also carried out along with a multifactor analysis by linear regression. The variables related to the characteristics of the population, residences and families were analyzed.RESULTS Areas with higher proportion of the population without social security benefits (p = 0.007) and of households with unsatisfied basic needs had a higher risk of nonadherence (p = 0.032). In addition, the proportion of nonadherence was higher in areas with the highest proportion of households with no public transportation within 300 meters (p = 0.070).CONCLUSIONS We found a risk area for the nonadherence to treatment characterized by a population living in poverty, with precarious jobs and difficult access to public transportation.
Resumo:
OBJECTIVE To analyze the spatial distribution of risk for tuberculosis and its socioeconomic determinants in the city of Rio de Janeiro, Brazil.METHODS An ecological study on the association between the mean incidence rate of tuberculosis from 2004 to 2006 and socioeconomic indicators of the Censo Demográfico (Demographic Census) of 2000. The unit of analysis was the home district registered in the Sistema de Informação de Agravos de Notificação (Notifiable Diseases Information System) of Rio de Janeiro, Southeastern Brazil. The rates were standardized by sex and age group, and smoothed by the empirical Bayes method. Spatial autocorrelation was evaluated by Moran’s I. Multiple linear regression models were studied and the appropriateness of incorporating the spatial component in modeling was evaluated.RESULTS We observed a higher risk of the disease in some neighborhoods of the port and north regions, as well as a high incidence in the slums of Rocinha and Vidigal, in the south region, and Cidade de Deus, in the west. The final model identified a positive association for the variables: percentage of permanent private households in which the head of the house earns three to five minimum wages; percentage of individual residents in the neighborhood; and percentage of people living in homes with more than two people per bedroom.CONCLUSIONS The spatial analysis identified areas of risk of tuberculosis incidence in the neighborhoods of the city of Rio de Janeiro and also found spatial dependence for the incidence of tuberculosis and some socioeconomic variables. However, the inclusion of the space component in the final model was not required during the modeling process.
Resumo:
ABSTRACT OBJECTIVE To describe the spatial patterns of leprosy in the Brazilian state of Tocantins. METHODS This study was based on morbidity data obtained from the Sistema de Informações de Agravos de Notificação (SINAN – Brazilian Notifiable Diseases Information System), of the Ministry of Health. All new leprosy cases in individuals residing in the state of Tocantins, between 2001 and 2012, were included. In addition to the description of general disease indicators, a descriptive spatial analysis, empirical Bayesian analysis and spatial dependence analysis were performed by means of global and local Moran’s indexes. RESULTS A total of 14,542 new cases were recorded during the period under study. Based on the annual case detection rate, 77.0% of the municipalities were classified as hyperendemic (> 40 cases/100,000 inhabitants). Regarding the annual case detection rate in < 15 years-olds, 65.4% of the municipalities were hyperendemic (10.0 to 19.9 cases/100,000 inhabitants); 26.6% had a detection rate of grade 2 disability cases between 5.0 and 9.9 cases/100,000 inhabitants. There was a geographical overlap of clusters of municipalities with high detection rates in hyperendemic areas. Clusters with high disease risk (global Moran’s index: 0.51; p < 0.001), ongoing transmission (0.47; p < 0.001) and late diagnosis (0.44; p < 0.001) were identified mainly in the central-north and southwestern regions of Tocantins. CONCLUSIONS We identified high-risk clusters for transmission and late diagnosis of leprosy in the Brazilian state of Tocantins. Surveillance and control measures should be prioritized in these high-risk municipalities.