959 resultados para magnetic resonance spectroscopy
Resumo:
In order to evaluate the capability of H-1 MRS to monitor longitudinal changes in subjects with probable Alzheimer's disease (AD), the temporal stability of the metabolite measures N-acetylaspartate and N-acetylas-partylglutamate (NA), total Creatine (Cr), myo-Inositol (mI), total Choline (Chol), NA/Cr, mI/Cr, Chol/Cr and NA/mI were investigated in a cohort of normal older adults. Only the metabolite measures NA, mi, Cr, NA/Cr, mI/Cr, and NA/mI were found to be stable after a mean interval of 260 days. Relative and absolute metabolite measures from a cohort of patients with probable AD were subsequently compared with data from a sample of normal older adult control subjects, and correlated with mental status and the degree of atrophy in the localized voxel. Concentrations of NA, NA/Cr, and NA/mI were significantly reduced in the AD group with concomitant significant increases in mi and mI/Cr. There were no differences between the two groups in measures of Cr, Chol, or Chol/Cr. Significant correlations between mental status as measured by the Mini-Mental State Examination and NA/mI, mI/Cr and NA were found. These metabolite measures were also significantly correlated with the extent of atrophy (as measured by CSF and GM composition) in the spectroscopy voxel. (C) 1999 Elsevier Science Inc.
Resumo:
An increased degree of utilization of the potential N-glycosylation site In the fourth repeat unit of the human tau protein may be involved in the inability of tau to bind to the corresponding tubulin sequence(s) and in the subsequent development of the paired helical filaments of Alzheimer's disease. To model these processes, we synthesized the octadecapeptide spanning this region without sugar, and with the addition of an N-acetyl-glucosamine moiety. The carbohydrate-protected, glycosylated asparagine was incorporated as a building block during conventional Fmoc-solid phase peptide synthesis. While the crude non-glycosylated analog was obtained as a single peptide, two peptides with, the identical, expected masses, in approximately equal amounts, were detected after the cleavage of the peracetylated glycopeptide. Surprisingly, the two glycopeptides switched positions on the reversed-phase high performance liquid chromatogram after removal of the sugar-protecting acetyl groups. Nuclear magnetic resonance spectroscopy and peptide sequencing identified the more hydrophobic deprotected peak as the target peptide, and the more hydrophilic deprotected peak as a peptide analog in which the aspartic acid-bond just preceding the glycosylated asparagine residue was isomerized resulting in the formation of a beta-peptide. The anomalous chromatographic behavior of the acetylated beta-isomer could be explained on the basis of the generation of an extended hydrophobic surface which is not present in any of the other three glycopeptide variants. Repetition of the syntheses, with altered conditions and reagents, revealed reproducibly high levels of aspartic acid-bond isomerization of the glycopeptide as well as lack of isomerization for the non-glycosylated parent analog. If similar increased aspartic acid-bond isomerization occurs in vivo, a protein modification well known to take place for both the amyloid deposits and the neurofibrillary tangles in Alzheimer's disease, this process may explain the aggregation of glycosylated tau into the paired helical filaments in the affected brains. Copyright (C) 1999 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
The small amounts of antibacterial peptides that can be isolated from insects do not allow detailed studies of their range of activity, side-chain sugar requirements, or their conformation, factors that frequently play roles in the mode of action. In this paper, we report the solid-phase step-by-step synthesis of diptericin, an 82-mer peptide, originally isolated from Phormia terranovae. The unglycosylated peptide was purified to homogeneity by conventional reversed-phase high performance liquid chromatography, and its activity spectrum was compared to that Of synthetic unglycosylated drosocin, which shares strong sequence homology with diptericin's N-terminal domain. Diptericin appeared to have antibacterial activity:for only a limited number of Gram-negative bacteria. Diptericin's submicromolar potency against Escherichia coli strains indicated that, in a manner similar to drosocin, the presence of the carbohydrate side chain is not,necessary to kill bacteria. Neither the N-terminal, drosocin-analog fragment, nor the C-terminal, glycine-rich attacin-analog region was active against any of the bacterial strains studied, regardless of whether the Gal-GalNAc disaccharide units were attached. This suggested that the active site of diptericin fell outside the drosocin or attacin homology domains. In addition, the conformation of diptericin did not seem to play a role in the antibacterial activity, as was demonstrated by the complete lack of ordered structure by two-dimensional nuclear magnetic resonance spectroscopy and circular dichroism. Diptericin completely killed bacteria within I h, considerably faster than drosocin and the attacins; unlike some other, fast-acting antibacterial peptides, diptericin did not lyse normal mammalian cells. Taken together, these data suggest diptericin does not belong to any known class of antibacterial peptides.
Resumo:
At a time of the emergence of drug-resistant bacterial strains, the development of antimicrobial compounds with novel mechanisms of action is of considerable interest. Perhaps the most promising among these is a family of antibacterial peptides originally isolated from insects. These were shown to act in a stereospecific manner on an as-yet unidentified target bacterial protein. One of these peptides, drosocin, is inactive in vivo due to the rapid decomposition in mammalian sera. However, another family member, pyrrhocoricin, is significantly more stable, has increased in vitro efficacy against Gram-negative bacterial strains, and if administered alone, as we show here, is devoid of in vitro or in vivo toxicity. At low doses, pyrrhocoricin protected mice against Escherichia call infection, but at a higher dose augmented the infection of compromised animals. Analogs of pyrrhocoricin were, therefore, synthesized to further improve protease resistance and reduce toxicity. A linear derivative containing unnatural amino acids at both termini showed high potency and lack of toxicity in vivo and an expanded cyclic analog displayed broad activity spectrum in vitro. The bioactive conformation of native pyrrhocoricin was determined by nuclear magnetic resonance spectroscopy, and similar to drosocin, reverse turns were identified as pharmacologically important elements at the termini, bridged by an extended peptide domain. Knowledge of the primary and secondary structural requirements for in vivo activity of these peptides allows the design of novel antibacterial drug leads.
Resumo:
Nuclear magnetic resonance spectroscopy was used to investigate the conformations of the platypus venom C-type natriuretic peptide A (OvCNPa) in aqueous solutions and in solutions containing sodium dodecyl sulfate (SDS) micelles. The chemically synthesized OvCNPa showed a substantial decrease in flexibility in aqueous solution at 10 degreesC, allowing the observation of medium- and long-range nuclear Overhauser enhancement (NOE) connectivities. Three-dimensional structures calculated using these data showed flexible and reasonably well-defined regions, the locations of which were similar in the two solvents. In aqueous solution, the linear part that spans residues 3-14 was basically an extended conformation while the cyclic portion, defined by residues 23-39, contained a series of beta-turns. The overall shape of the cyclic portion was similar to that observed for an atrial natriuretic peptide (ANP) variant in aqueous solution. OvCNPa adopted a different conformation in SDS micelles wherein the N-terminal region, defined by residues 2-10, was more compact, characterised by turns and a helix, while the cyclic region had turns and an overall shape that was fundamentally different from those structures observed in aqueous solution. The hydrophobic cluster, situated at the centre of the ring of the structure in aqueous solution, was absent in the structure in the presence of SDS micelles. Thus, OvCNPa interacts with SDS micelles and can possibly form ion-channels in cell membranes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This work reports on the synthesis and characterization of the ligand 3-hexadecylpentane-2,4-drone (Hhdacac) and its Eu(3+) complexes Eu(hdacac)(6) center dot 2H(2)O, Eu(hdacac)(6) center dot phen and Eu(hdacac)(6) center dot tta, where phen and tta denote 1,10-phenanthroline and thenoyltrifluoroacetone, respectively. These new compounds present long carbon chains and their expected miscibility into non-polar ambients is confirmed by the emission spectra of Eu(hdacac)6 center dot tta in hexane. Moreover, the amphiphilic properties of Eu(hdacac)6 complexes allow the obtainment of thin luminescent films by the Langmuir-Blodgett technique. In both cases (solids and films), the typical antenna effect of beta-diketonates is observed. The alluring characteristics of these compounds raise great interest in many fields of Materials Science, like photo- and electro-luminescent materials (mainly thin ""organic"" films), metal catalysts or probes in non-polar solutions, and Langmuir-Blodgett films of several compositions. For the characterization of these products, nuclear magnetic resonance spectroscopy ((1)H NMR), thermogravimetric analysis, elementary analyses (C, H), scanning electron microscopy (energy dispersive X-ray spectroscopy), absorption (UV-vis/FT-IR) and photoluminescence spectroscopies were used. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The photodegradation of irinotecan (CPT-11), the semisynthetic derivative of the antitumor alkaloid 20(S)-camptothecin, has been investigated. The drug was exposed to laboratory light for up to 5 days in 0.9% saline solution (pH 8.5). Five significant photodegradation products were observed and a high-performance liquid chromatography (HPLC) assay was employed to isolate them from CPT-11 using gradient conditions. The structures were elucidated by nuclear magnetic resonance spectroscopy and tandem mass spectrometry and shown to be the result of extensive modifications of the lactone ring of CPT-11. Three of the compounds were found to belong to the mappicine group of alkaloids. In addition, the effect of light on the stability of CPT-11 in aqueous solutions and biological fluids was also assessed, Potassium phosphate buffers (0.05 M, pH 5.0-8.2) and saline, plasma, urine, and bile solutions containing 20 mu M CPT-11 were equilibrated in the dark for 24 h before being exposed to laboratory light for up to 171 h at ambient temperature. Four of the five identified photodegradation products were observed and quantitated by isocratic HPLC, using a different detection mode (fluorescence) than the one used for gradient elution, In general, CPT-11 was found to be unstable under neutral and alkaline conditions for all solutions investigated, with the exception of bile. We conclude that CPT-11 is photolabile and that care should be taken to protect samples, particularly those intended for the isolation and identification of novel metabolites of CPT-11.
Resumo:
Sulfite oxidase is a mitochondrial enzyme encoded by the SUOX gene and essential for the detoxification of sulfite which results mainly from the catabolism of sulfur-containing amino acids. Decreased activity of this enzyme can either be due to mutations in the SUOX gene or secondary to defects in the synthesis of its cofactor, the molybdenum cofactor. Defects in the synthesis of the molybdenum cofactor are caused by mutations in one of the genes MOCS1, MOCS2, MOCS3 and GEPH and result in combined deficiencies of the enzymes sulfite oxidase, xanthine dehydrogenase and aldehyde oxidase. Although present in many ethnic groups, isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are rare inborn errors of metabolism, which makes awareness of key clinical and laboratory features of affected individuals crucial for early diagnosis. We report clinical, radiologic, biochemical and genetic data on a Brazilian and on a Turkish child with sulfite oxidase deficiency due to the isolated defect and impaired synthesis of the molybdenum cofactor, respectively. Both patients presented with early onset seizures and neurological deterioration. They showed no sulfite oxidase activity in fibroblasts and were homozygous for the mutations c.1136A>G in the SUOX gene and c.667insCGA in the MOCS1 gene, respectively. Widely available routine laboratory tests such as assessment of total homocysteine and uric acid are indicated in children with a clinical presentation resembling that of hypoxic ischemic encephalopathy and may help in obtaining a tentative diagnosis locally, which requires confirmation by specialized laboratories. (C) 2009 Published by Elsevier B.V.
Resumo:
A two-domain portion of the proteinase inhibitor precursor from Nicotiana alata (NaProPI) has been expressed and its structure determined by NMR spectroscopy. NaProPI contains six almost identical 53 amino acid repeats that fold into six highly similar domains; however, the sequence repeats do nut coincide with the structural domains. Five of the structural domains comprise the C-terminal portion of one repeat and the N-terminal portion of the next. The sixth domain contains the C-terminal portion of the sixth repeat and the N-terminal portion of the first repeat. Disulphide bonds link these C and N-terminal fragments to generate the clasped-bracelet fold of NaProPI. The three-dimensional structure of NaProPI is not known, but it is conceivable that adjacent domains in NaProPI interact to generate the circular bracelet with the N and C termini in close enough proximity to facilitate formation of the disulphide bonds that form the clasp The expressed protein, examined in the current study, comprises residues 25-135 of NaProPI and encompasses the first two contiguous structural domains, namely the chymotrypsin inhibitor C1 and the trypsin inhibitor T1, joined by a five-residue linker, and is referred to as C1-T1. The tertiary structure of each domain in C1-T1 is identical to that found in the isolated inhibitors. However, no nuclear Overhauser effect contacts are observed between the two domains and the five-residue linker adopts an extended conformation. The absence of interactions between the domains indicates that adjacent domains do not specifically interact to drive the circularisation of NaProPI. These results are in agreement with recent data which describe similar PI precursors from other members of the Solanaceae having two, three, or four repeats. The lack of strong interdomain association is likely to be important for the function of individual inhibitors by ensuring that there is no masking of reactive sites upon release from the precursor. (C) 2001 Academic Press.
Resumo:
The purpose of this study, was to develop a newborn piglet model of hypoxia/ischaemia which would better emulate the clinical situation in the asphyxiated human neonate and produce a consistent degree of histopathological injury following the insult. One-day-old piglets (n = 18) were anaesthetised with a mixture of propofol (10 mg/kg/h) and alfentinal (5,5.5 mug/kg/h) i.v. The piglets were intubated and ventilated. Physiological variables were monitored continuously. Hypoxia was induced by decreasing the inspired oxygen (FiO(2)) to 3-4% and adjusting FiO(2) to maintain the cerebral function monitor peak amplitude at less than or equal to5 muV. The duration of the mild insult was 20, min while the severe insult was 30 min which included 10 min where the blood pressure was allowed to fall below 70% of baseline. Control piglets (n=4 of 18) were subjected to the same protocol except for the hypoxic/ischaemic insult. The piglets were allowed to recover from anaesthesia then euthanased 72 It after the insult. The brains were perfusion-fixed, removed and embedded in paraffin. Coronal sections were stained by haematoxylin/eosin. A blinded observer examined the frontal and parietal cortex, hippocampus, basal ganglia, thalamus and cerebellum for the degree of damage. The total mean histology score for the five areas of the brain for the severe insult was 15.6 +/-4.4 (mean +/-S.D., n=7), whereas no damage was seen in either the mild insult (n=4) or control groups. This 'severe damage' model produces a consistent level of damage and will prove useful for examining potential neuroprotective therapies in the neonatal brain. (C) 2001 Elsevier Science BY. All rights reserved.
Resumo:
This study tested the hypotheses that skeletal muscle mitochondrial ATP production rate (MAPR) is impaired in patients with peripheral arterial disease (PAD) and that it relates positively to their walking performances. Seven untrained patients, eight exercise-trained patients and 11 healthy controls completed a maximal walking test and had muscle sampled from the gastrocnemius medialis muscle. Muscle was analysed for its MAPR in the presence of pyruvate, palmitoyl-L-carnitine or both, as well as citrate synthase (CS) activity. MAPRs were not different between untrained PAD and controls. In contrast, MAPRs (pyruvate) were significantly higher in trained PAD vs. controls. MAPR (pyruvate combinations) was also significantly higher in trained than untrained PAD muscle. MAPR and CS activity were highly correlated with walking performance in patients, but not in controls. These data do not support the hypothesis that isolated mitochondria are functionally impaired in PAD and demonstrate that the muscle mitochondrial capacity to oxidize carbohydrate is positively related to walking performance in these patients.
Resumo:
Within the skeletal muscle cell at the onset of muscular contraction, phosphocreatine (PCr) represents the most immediate reserve for the rephosphorylation of adenosine triphosphate (ATP). As a result, its concentration can be reduced to less than 30% of resting levels during intense exercise. As a fall in the level of PCr appears to adversely affect muscle contraction, and therefore power output in a subsequent bout, maximising the rate of PCr resynthesis during a brief recovery period will be of benefit to an athlete involved in activities which demand intermittent exercise. Although this resynthesis process simply involves the rephosphorylation of creatine by aerobically produced ATP (with the release of protons), it has both a fast and slow component, each proceeding at a rate that is controlled by different components of the creatine kinase equilibrium. The initial fast phase appears to proceed at a rate independent of muscle pH. Instead, its rate appears to be controlled by adenosine diphosphate (ADP) levels; either directly through its free cytosolic concentration, or indirectly, through its effect on the free energy of ATP hydrolysis. Once this fast phase of recovery is complete, there is a secondary slower phase that appears almost certainly rate-dependant on the return of the muscle cell to homeostatic intracellular pH. Given the importance of oxidative phosphorylation in this resynthesis process, those individuals with an elevated aerobic power should be able to resynthesise PCr at a more rapid rate than their sedentary counterparts. However, results from studies that have used phosphorus nuclear magnetic resonance (P-31-NMR) spectroscopy, have been somewhat inconsistent with respect to the relationship between aerobic power and PCr recovery following intense exercise. Because of the methodological constraints that appear to have limited a number of these studies, further research in this area is warranted.
Resumo:
Objective: To investigate the effects of rosiglitazone (RSG) on insulin sensitivity and regional adiposity (including intrahepatic fat) in patients with type 2 diabetes. Research Methods and Procedures: We examined the effect of RSG (8 mg/day, 2 divided doses) compared with placebo on insulin sensitivity and body composition in 33 type 2 diabetic patients. Measurements of insulin sensitivity (euglycemic hyperinsulinemic clamp), body fat (abdominal magnetic resonance imaging and DXA), and liver fat (magnetic resonance spectroscopy) were taken at baseline and repeated after 16 weeks of treatment. Results: There was a significant improvement in glycemic control (glycosylated hemoglobin -0.7 +/- 0.7%, p less than or equal to 0.05) and an 86% increase in insulin sensitivity in the RSG group (glucose-disposal rate change from baseline: 17.5 +/- 14.5 mumol glucose/min/kg free fat mass, P < 0.05), but no significant change in the placebo group compared with baseline. Total body weight and fat mass increased (p &LE; 0.05) with RSG (2.1 +/- 2.0 kg and 1.4 +/- 1.6 kg, respectively) with 95% of the increase in adiposity occurring in nonabdominal regions. In the abdominal region, RSG increased subcutaneous fat area by 8% (25.0 +/- 28.7 cm(2), p = 0.02), did not alter intra-abdominal fat area, and reduced intrahepatic fat levels by 45% (-6.7 +/- 9.7%, concentration relative to water). Discussion: Our data indicate that RSG greatly improves insulin sensitivity in patients with type 2 diabetes and is associated with an increase in adiposity in subcutaneous but not visceral body regions.
Resumo:
NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of NaD1, a novel antifungal and insecticidal protein isolated from the flowers of Nicotiana alata. NaD1 is a basic, cysteine-rich protein of 47 residues and is the first example of a plant defensin from flowers to be characterized structurally. Its three-dimensional structure consists of an a-helix and a triple-stranded anti-parallel beta-sheet that are stabilized by four intramolecular disulfide bonds. NaD1 features all the characteristics of the cysteine-stabilized up motif that has been described for a variety of proteins of differing functions ranging from antibacterial insect defensins and ion channel-perturbing scorpion toxins to an elicitor of the sweet taste response. The protein is biologically active against insect pests, which makes it a potential candidate for use in crop protection. NaD1 shares 31% sequence identity with alfAFP, an antifungal protein from alfalfa that confers resistance to a fungal pathogen in transgenic potatoes. The structure of NaD1 was used to obtain a homology model of alfAFP, since NaD1 has the highest level of sequence identity with alfAFP of any structurally characterized antifungal defensin. The structures of NaD1 and alfAFP were used in conjunction with structure - activity data for the radish defensin Rs-AFP2 to provide an insight into structure-function relationships. In particular, a putative effector site was identified in the structure of NaD1 and in the corresponding homology model of alfAFP. (C) 2002 Elsevier Science Ltd. All rights reserved.