995 resultados para macroeconomic data
Resumo:
Departmental Data Protection manual
Resumo:
Statement of departmental data protection policy
Resumo:
The European Surveillance of Congenital Anomalies (EUROCAT) network of population-based congenital anomaly registries is an important source of epidemiologic information on congenital anomalies in Europe covering live births, fetal deaths from 20 weeks gestation, and terminations of pregnancy for fetal anomaly. EUROCAT's policy is to strive for high-quality data, while ensuring consistency and transparency across all member registries. A set of 30 data quality indicators (DQIs) was developed to assess five key elements of data quality: completeness of case ascertainment, accuracy of diagnosis, completeness of information on EUROCAT variables, timeliness of data transmission, and availability of population denominator information. This article describes each of the individual DQIs and presents the output for each registry as well as the EUROCAT (unweighted) average, for 29 full member registries for 2004-2008. This information is also available on the EUROCAT website for previous years. The EUROCAT DQIs allow registries to evaluate their performance in relation to other registries and allows appropriate interpretations to be made of the data collected. The DQIs provide direction for improving data collection and ascertainment, and they allow annual assessment for monitoring continuous improvement. The DQI are constantly reviewed and refined to best document registry procedures and processes regarding data collection, to ensure appropriateness of DQI, and to ensure transparency so that the data collected can make a substantial and useful contribution to epidemiologic research on congenital anomalies.
Resumo:
As part of the development of the database Bgee (a dataBase for Gene Expression Evolution), we annotate and analyse expression data from different types and different sources, notably Affymetrix data from GEO and ArrayExpress, and RNA-Seq data from SRA. During our quality control procedure, we have identified duplicated content in GEO and ArrayExpress, affecting ∼14% of our data: fully or partially duplicated experiments from independent data submissions, Affymetrix chips reused in several experiments, or reused within an experiment. We present here the procedure that we have established to filter such duplicates from Affymetrix data, and our procedure to identify future potential duplicates in RNA-Seq data. Database URL: http://bgee.unil.ch/
Resumo:
High-throughput technologies are now used to generate more than one type of data from the same biological samples. To properly integrate such data, we propose using co-modules, which describe coherent patterns across paired data sets, and conceive several modular methods for their identification. We first test these methods using in silico data, demonstrating that the integrative scheme of our Ping-Pong Algorithm uncovers drug-gene associations more accurately when considering noisy or complex data. Second, we provide an extensive comparative study using the gene-expression and drug-response data from the NCI-60 cell lines. Using information from the DrugBank and the Connectivity Map databases we show that the Ping-Pong Algorithm predicts drug-gene associations significantly better than other methods. Co-modules provide insights into possible mechanisms of action for a wide range of drugs and suggest new targets for therapy
Resumo:
In this work discuss the use of the standard model for the calculation of the solvency capital requirement (SCR) when the company aims to use the specific parameters of the model on the basis of the experience of its portfolio. In particular, this analysis focuses on the formula presented in the latest quantitative impact study (2010 CEIOPS) for non-life underwriting premium and reserve risk. One of the keys of the standard model for premium and reserves risk is the correlation matrix between lines of business. In this work we present how the correlation matrix between lines of business could be estimated from a quantitative perspective, as well as the possibility of using a credibility model for the estimation of the matrix of correlation between lines of business that merge qualitative and quantitative perspective.
Resumo:
Syphacia muris worm burdens were evaluated in the rat Rattus norvegicus of the strains Wistar (outbred), Low/M and AM/2/Torr (inbred), maintained conventionally in institutional animal houses in Brazil. Morphometrics and illustration data for S. muris recovered from Brazilian laboratory rats are provided for the first time since its proposition in 1935.
Resumo:
We report the finding of Tetrameres spirospiculum Pinto & Vicente, 1995 from Theristicus melanopis melanopis (Threskiornithidae) from Patagonia, Argentina. These constitute new host and locality records. We propose the assignation of this species to the subgenus T. (Gynaecophila) Gubanov, 1950, based on the presence of labia and the absence of cuticular flanges at the anterior end. Some new morphological data are provided, such as the arrangement of cuticular spines and the presence of a pair of somatic papillae at beginning of posterior third of body length. T. (G.) spirospiculum may probably be regarded as specific to birds of the genus Theristicus.
Resumo:
We use historical data that cover more than one century on real GDP for industrial countries and employ the Pesaran panel unit root test that allows for cross-sectional dependence to test for a unit root on real GDP. We find strong evidence against the unit root null. Our results are robust to the chosen group of countries and the sample period. Key words: real GDP stationarity, cross-sectional dependence, CIPS test. JEL Classification: C23, E32
Resumo:
BACKGROUND: Greater tobacco smoking and alcohol consumption and lower body mass index (BMI) increase odds ratios (OR) for oral cavity, oropharyngeal, hypopharyngeal, and laryngeal cancers; however, there are no comprehensive sex-specific comparisons of ORs for these factors. METHODS: We analyzed 2,441 oral cavity (925 women and 1,516 men), 2,297 oropharynx (564 women and 1,733 men), 508 hypopharynx (96 women and 412 men), and 1,740 larynx (237 women and 1,503 men) cases from the INHANCE consortium of 15 head and neck cancer case-control studies. Controls numbered from 7,604 to 13,829 subjects, depending on analysis. Analyses fitted linear-exponential excess ORs models. RESULTS: ORs were increased in underweight (<18.5 BMI) relative to normal weight (18.5-24.9) and reduced in overweight and obese categories (>/=25 BMI) for all sites and were homogeneous by sex. ORs by smoking and drinking in women compared with men were significantly greater for oropharyngeal cancer (p < 0.01 for both factors), suggestive for hypopharyngeal cancer (p = 0.05 and p = 0.06, respectively), but homogeneous for oral cavity (p = 0.56 and p = 0.64) and laryngeal (p = 0.18 and p = 0.72) cancers. CONCLUSIONS: The extent that OR modifications of smoking and drinking by sex for oropharyngeal and, possibly, hypopharyngeal cancers represent true associations, or derive from unmeasured confounders or unobserved sex-related disease subtypes (e.g., human papillomavirus-positive oropharyngeal cancer) remains to be clarified.
Resumo:
Des progrès significatifs ont été réalisés dans le domaine de l'intégration quantitative des données géophysique et hydrologique l'échelle locale. Cependant, l'extension à de plus grandes échelles des approches correspondantes constitue encore un défi majeur. Il est néanmoins extrêmement important de relever ce défi pour développer des modèles fiables de flux des eaux souterraines et de transport de contaminant. Pour résoudre ce problème, j'ai développé une technique d'intégration des données hydrogéophysiques basée sur une procédure bayésienne de simulation séquentielle en deux étapes. Cette procédure vise des problèmes à plus grande échelle. L'objectif est de simuler la distribution d'un paramètre hydraulique cible à partir, d'une part, de mesures d'un paramètre géophysique pertinent qui couvrent l'espace de manière exhaustive, mais avec une faible résolution (spatiale) et, d'autre part, de mesures locales de très haute résolution des mêmes paramètres géophysique et hydraulique. Pour cela, mon algorithme lie dans un premier temps les données géophysiques de faible et de haute résolution à travers une procédure de réduction déchelle. Les données géophysiques régionales réduites sont ensuite reliées au champ du paramètre hydraulique à haute résolution. J'illustre d'abord l'application de cette nouvelle approche dintégration des données à une base de données synthétiques réaliste. Celle-ci est constituée de mesures de conductivité hydraulique et électrique de haute résolution réalisées dans les mêmes forages ainsi que destimations des conductivités électriques obtenues à partir de mesures de tomographic de résistivité électrique (ERT) sur l'ensemble de l'espace. Ces dernières mesures ont une faible résolution spatiale. La viabilité globale de cette méthode est testée en effectuant les simulations de flux et de transport au travers du modèle original du champ de conductivité hydraulique ainsi que du modèle simulé. Les simulations sont alors comparées. Les résultats obtenus indiquent que la procédure dintégration des données proposée permet d'obtenir des estimations de la conductivité en adéquation avec la structure à grande échelle ainsi que des predictions fiables des caractéristiques de transports sur des distances de moyenne à grande échelle. Les résultats correspondant au scénario de terrain indiquent que l'approche d'intégration des données nouvellement mise au point est capable d'appréhender correctement les hétérogénéitées à petite échelle aussi bien que les tendances à gande échelle du champ hydraulique prévalent. Les résultats montrent également une flexibilté remarquable et une robustesse de cette nouvelle approche dintégration des données. De ce fait, elle est susceptible d'être appliquée à un large éventail de données géophysiques et hydrologiques, à toutes les gammes déchelles. Dans la deuxième partie de ma thèse, j'évalue en détail la viabilité du réechantillonnage geostatique séquentiel comme mécanisme de proposition pour les méthodes Markov Chain Monte Carlo (MCMC) appliquées à des probmes inverses géophysiques et hydrologiques de grande dimension . L'objectif est de permettre une quantification plus précise et plus réaliste des incertitudes associées aux modèles obtenus. En considérant une série dexemples de tomographic radar puits à puits, j'étudie deux classes de stratégies de rééchantillonnage spatial en considérant leur habilité à générer efficacement et précisément des réalisations de la distribution postérieure bayésienne. Les résultats obtenus montrent que, malgré sa popularité, le réechantillonnage séquentiel est plutôt inefficace à générer des échantillons postérieurs indépendants pour des études de cas synthétiques réalistes, notamment pour le cas assez communs et importants où il existe de fortes corrélations spatiales entre le modèle et les paramètres. Pour résoudre ce problème, j'ai développé un nouvelle approche de perturbation basée sur une déformation progressive. Cette approche est flexible en ce qui concerne le nombre de paramètres du modèle et lintensité de la perturbation. Par rapport au rééchantillonage séquentiel, cette nouvelle approche s'avère être très efficace pour diminuer le nombre requis d'itérations pour générer des échantillons indépendants à partir de la distribution postérieure bayésienne. - Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches beyond the local scale still represents a major challenge, yet is critically important for the development of reliable groundwater flow and contaminant transport models. To address this issue, I have developed a hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure that is specifically targeted towards larger-scale problems. The objective is to simulate the distribution of a target hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, my algorithm links the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. I first illustrate the application of this novel data integration approach to a realistic synthetic database consisting of collocated high-resolution borehole measurements of the hydraulic and electrical conductivities and spatially exhaustive, low-resolution electrical conductivity estimates obtained from electrical resistivity tomography (ERT). The overall viability of this method is tested and verified by performing and comparing flow and transport simulations through the original and simulated hydraulic conductivity fields. The corresponding results indicate that the proposed data integration procedure does indeed allow for obtaining faithful estimates of the larger-scale hydraulic conductivity structure and reliable predictions of the transport characteristics over medium- to regional-scale distances. The approach is then applied to a corresponding field scenario consisting of collocated high- resolution measurements of the electrical conductivity, as measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, as estimated from electromagnetic flowmeter and slug test measurements, in combination with spatially exhaustive low-resolution electrical conductivity estimates obtained from surface-based electrical resistivity tomography (ERT). The corresponding results indicate that the newly developed data integration approach is indeed capable of adequately capturing both the small-scale heterogeneity as well as the larger-scale trend of the prevailing hydraulic conductivity field. The results also indicate that this novel data integration approach is remarkably flexible and robust and hence can be expected to be applicable to a wide range of geophysical and hydrological data at all scale ranges. In the second part of my thesis, I evaluate in detail the viability of sequential geostatistical resampling as a proposal mechanism for Markov Chain Monte Carlo (MCMC) methods applied to high-dimensional geophysical and hydrological inverse problems in order to allow for a more accurate and realistic quantification of the uncertainty associated with the thus inferred models. Focusing on a series of pertinent crosshole georadar tomographic examples, I investigated two classes of geostatistical resampling strategies with regard to their ability to efficiently and accurately generate independent realizations from the Bayesian posterior distribution. The corresponding results indicate that, despite its popularity, sequential resampling is rather inefficient at drawing independent posterior samples for realistic synthetic case studies, notably for the practically common and important scenario of pronounced spatial correlation between model parameters. To address this issue, I have developed a new gradual-deformation-based perturbation approach, which is flexible with regard to the number of model parameters as well as the perturbation strength. Compared to sequential resampling, this newly proposed approach was proven to be highly effective in decreasing the number of iterations required for drawing independent samples from the Bayesian posterior distribution.
Resumo:
Health and Social Care: Comparative Data for Northern Ireland and other Countries - May 2004