986 resultados para lysine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The processes of adsorption of grafted copolymers onto negatively charged surfaces were studied using a dissipative quartz crystal microbalance (D-QCM) and ellipsometry. The control parameters in the study of the adsorption are the existence or absence on the molecular architecture of grafted polyethyleneglycol (PEG) chains with different lengths and the chemical nature of the main chain, poly(allylamine) (PAH) or poly(L-lysine) (PLL). It was found out that the adsorption kinetics of the polymers showed a complex behavior. The total adsorbed amount depends on the architecture of the polymer chains (length of the PEG chains), on the polymer concentration and on the chemical nature of the main chain. The comparison of the thicknesses of the adsorbed layers obtained from D-QCM and from ellipsometry allowed calculation of the water content of the layers that is intimately related to the grafting length. The analysis of D-QCM results also provides information about the shear modulus of the layers, whose values have been found to be typical of a rubber-like polymer system. It is shown that the adsorption of polymers with a charged backbone is not driven exclusively by the electrostatic interactions, but the entropic contributions as a result of the trapping of water in the layer structure are of fundamental importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La semilla es el principal órgano reproductivo de las plantas espermatofitas, permitiendo la dispersión de las poblaciones y asegurando su supervivencia gracias a su tolerancia a la desecación y a su capacidad para germinar bajo condiciones ambientales óptimas. El rendimiento y valor económico de los cereales, que constituyen la primera cosecha mundial, depende, en buena medida, de la eficacia con que se acumulan en la semilla sustancias de reserva: proteínas, carbohidratos y lípidos. El principal carbohidrato acumulado en la semilla de cebada es el almidón y la fracción mayoritaria de proteínas es la de las prolaminas (solubles en etanol al 70%); estas proteínas tienen muy bajo contenido en lisina, un aminoácido esencial en la dieta de animales monogástricos. Con el fin de mejorar el valor nutricional de la semilla de cebada, se han obtenido diferentes mutantes con un mayor contenido en este aminoácido. Riso 1508 es un mutante de cebada rico en lisina cuya mutación lys3a, de efectos pleiotrópicos, segrega como un único gen mendeliano. Entre otros, presenta una reducción drástica de la expresión de algunos genes que codifican proteínas de reserva de tipo prolamina, en concreto, presenta reducida la expresión de los genes que codifican B-, C- y ϒ-Hordeínas y del inhibidor de tripsina CMe, pero no tiene alterada la expresión del gen que codifica las D-Hordeínas. Este último gen carece en su promotor del motivo GLM (5’‐(G/A)TGA(G/C)TCA(T/C)‐3’), que es reconocido por factores transcripcionales bZIP. En este trabajo, el mutante de cebada Riso 1508 se ha utilizado como herramienta para profundizar en el conocimiento de la regulación génica en semillas durante las fases de la maduración y la germinación. Para ello, en una primera aproximación, se llevó a cabo un análisis transcriptómico comparando el genotipo mutante con el silvestre durante la maduración de la semilla. Además de confirmar variaciones en los genes que codifican proteínas de reserva, este análisis indicó que también estaban afectados los genes relacionados con metabolismo de carbohidratos. Por ello se decidió caracterizar la familia multigénica de sacarosas sintasa (SUSy) en cebada. Se anotaron dos nuevos genes, HvSs3 y HvSs4, cuya expresión se comparó con la de los genes HvSs1 y HvSs2, previamente descritos en el laboratorio. La expresión de los cuatro genes en tejidos diferentes y su respuesta a estreses abióticos se analizó mediante RT-qPCR. HvSs1 y HvSs2 se expresaron preferencialmente durante el desarrollo del endospermo, y HvSs1 también fue un tránscrito abundante durante la germinación. HvSs1 se indujo en hojas en condiciones de anoxia y HvSs3 por estrés hídrico, y ambos genes se indujeron por tratamientos de frío. La localización subcelular de las cuatro isoformas no fue sólo citoplásmica, sino que también se localizaron en zonas próximas a retículo endoplásmico y en la cara interna de la membrana plasmática; además, se observó una co-localización de HvSS1 con el marcador de mitocondrias. Estos datos sugieren un papel distinto aunque parcialmente solapante de las cuatro Sacarosa Sintasas de cebada, descritas hasta la fecha. Las cinéticas de expresión de los genes que codifican los TFs más importantes implicados en la regulación génica durante el desarrollo del endospermo de cebada, se analizaron por RT-qPCR en ambos genotipos, demostrando que los TFs de la clase DOF aparecieron desregulados durante todo el proceso en Riso 1508 comparado con el cv. Bomi, aunque también se observaron diferencias significativas en algunos de los que codifican bZIPs. Estudios previos indicaban que el ortólogo de BLZ2 en maíz, O2, se regula post-traduccionalmente mediante un mecanismo de fosforilación/defosforilación reversible, y que la forma defosforilada es la fisiológicamente activa. En este trabajo se demostró que BLZ2 está sujeto a este tipo de regulación y que la proteín-fosfatasa HvPP2C2 está implicada en el proceso. La interacción de HvPP2C2 y BLZ2 tiene lugar en el núcleo celular únicamente en presencia de 100 μM ABA. En el mutante Riso 1508, BLZ2 se encuentra en un estado hiperfosforilado tanto durante la maduración como durante la germinación de la semilla, lo que dificultaría la unión de BLZ2 a las secuencias GLM en los promotores de los genes que codifican B-, C-,y ϒ- Hordeínas y CMe. Summary The seed is the main reproductive organ of spermatophyte plants allowing the spread of populations and ensuring their survival through its desiccation tolerance and because of their ability to germinate under optimum environmental conditions. Yield and economic value of cereal crops, that constitute the first world crop, depend largely on the efficiency with which they accumulate in the seed reserve substances: proteins, carbohydrates and lipids. The main carbohydrate accumulated in the barley seed is starch and the major protein fraction is that of prolamins (soluble in 70% ethanol); these proteins have a very low lysine content, an essential amino-acid for the diet of monogastric animals. In order to improve the nutritional value of the barley seed, different mutants have been obtained with a higher content of this amino-acid. Riso 1508 is one lysine-rich mutant whose mutation (lys3a) segregates as a single Mendelian gene with pleiotropic effects, such as a drastic reduction of genes encoding the trypsin inhibitor CMe and the B-, C-and ϒ-hordeins, but has not altered the expression of the gene encoding the D-hordeins. This latter gene lacks in its promotor the GLM motif (5’‐(G/A)TGA(G/C)TCA(T/C)‐3’), that is recognised by bZIP transcription factors In this work we have used the barley mutant Riso 1508 as a tool for better understanding gene regulation in seeds during the maturation and germination phases. To this aim, a transcriptomic analysis was performed comparing wild and mutant genotypes during seed maturation. Besides confirming variations in the expression of genes encoding reserve proteins, this analysis indicated that some genes related with carbohydrate metabolism were also affected. It was therefore decided to characterize the multigene family of sucrose synthases (SUSy) in barley. Two new genes were annotated, HvSs3 and HvSs4, and its expression was compared with that of genes HvSs1 and HvSs2, previously described in our laboratory. The expression of the four genes in different tissues and in response to abiotic stresses was analyzed by RTqPCR. HvSs1 and HvSs2 were preferentially expressed during the development of the endosperm, and the HvSs1 transcript was also abundant upon germination. HvSs1 was induced in leaves by anoxic conditions, HvSs3 by water stress, and both genes were induced by cold treatments. The subcellular localization of all four isoforms was not only cytoplasmic, but they could be found along the endoplasmic reticulum and at the inner side of the cell membrane; HvSS1, was also associated with the mitochondrial marker. These data suggest a distinct but partially overlapping roles for the barley sucrose synthases, described so far. The expression kinetics of the genes encoding the most important TFs involved in gene regulation during barley endosperm development was analyzed by RT-qPCR in both genotypes. These data show that the genes encoding DOF TFs were mis-regulated throughout the process in Riso 1508, although significant differences were also found among some of those encoding bZIPs. Previous studies indicated that the BLZ2 orthologue in maize, O2, was post-translationally regulated by reversible phosphorylation/dephosphorylation and that the dephosphorylated protein is the physiologically active form. In this work we demostrate that BLZ2 is under a similar regulation and that the proteinphosphatase HvPP2C2 is implicated in the process. The interaction between HvPP2C2 and BLZ2 takes place in the cell nucleus only in the presence of 100 μM ABA. In the Riso 1508 mutant, BLZ2 is found in a hyperphosphorylated state in the maturation phase and upon seed germination; because of this, the BLZ2 binding to the GLM promoter sequences of genes encoding B-, C- y ϒ- Hordeins and CMe would be decreased in the mutant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The correlations between chemical composition and coefficient of standardized ileal digestibility (CSID) of crude protein (CP) and amino acids (AA) were determined in 22 soybean meal (SBM) samples originated from USA (n = 8), Brazil (BRA; n = 7) and Argentina (ARG; n = 7) in 21-day old broilers. Birds were fed a commercial maize-SBM diet from 1 to 17 days of age followed by the experimental diets in which the SBM tested was the only source of protein (205 g CP/kg) for three days. Also, in vitro nitrogen (N) digestion study was conducted with these samples using the two-step enzymatic method. The coefficient of apparent ileal digestibility (CAID) of the SBM, independent of the origin, varied from 0.820 to 0.880 for CP, 0.850 to 0.905 for lysine (Lys), 0.859 to 0.907 for methionine (Met) and 0.664 to 0.750 for cysteine (Cys). The corresponding CSID values varied from 0.850 to 0.966 for CP, 0.891 to 0.940 for Lys, 0.931 to 0.970 for Met and 0.786 to 0.855 for Cys. The CSID of CP and Lys of the SBM were positively correlated with CP (r = 0.514; P menor que 0.05 and r = 0.370; P = 0.09, respectively), KOH solubility (KOH sol.) (r = 0.696; P menor que 0.001 and r = 0.619; P menor que 0.01, respectively), trypsin inhibitor activity (TIA) (r = 0.541; P menor que 0.01 and r = 0.416; P = 0.05, respectively) and reactive Lys (r = 0.563; P menor que 0.01 and r = 0.486; P menor que 0.05) values, but no relation was observed with neutral detergent fiber and oligosaccharide content. No relation between the CSID of CP determined in vivo and N digestibility determined in vitro was found. The CSID of most key AA were higher for the USA and the BRA meals than for the ARG meals. For Lys, the CSID was 0.921, 0.919 and 0.908 (P menor que 0.05) and for Cys 0.828, 0.833 and 0.800 (P menor que 0.01) for USA, BRA and ARG meals, respectively. It is concluded that under the conditions of this experiment, the CSID of CP and Lys increased with CP content, KOH sol., TIA and reactive Lys values of the SBM. The CSID of most limiting AA, including Lys and Cys, were higher for USA and BRA meals than for ARG meals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyelectrolyte multilayers (PEM) built by layer-by-layer technique have been extensively studied over the last years, resulting in a wide variety of current and potential applications. This technique can be used to construct thin films with different functionalities, or to functionalize surfaces with substantial different properties of those of the underlying substrates. The multilayering process is achieved by the alternate adsorption of oppositely charged polyelectrolytes. In this work we get advantage of the protein resistant property of the Poly (l-lysine)-graft-(polyethyleneglycol) to create protein patterns. Proteins can be immobilized on a surface by unspecific physical adsorption, covalent binding or through specific interactions. The first protein used in this work was laccase, a copper-containing redox enzyme that catalyse the oxidation of a broad range of polyphenols and aromatic substrates, coupled to the reduction of O2 to H2O without need of cofactors. Applications of laccases have been reported in food, pulp, paper, and textile industry, and also in biosensor development. Some uses require the immobilization of the enzyme on solid supports by adsorption, covalent attachment, entrapment, etc, on several substrates. Especially for biosensor development, highly active, stable and reproducible immobilization of laccase is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two experiments were conducted to estimate the standardized ileal digestible (SID) Trp:Lys ratio requirement for growth performance of nursery pigs. Experimental diets were formulated to ensure that lysine was the second limiting AA throughout the experiments. In Exp. 1 (6 to 10 kg BW), 255 nursery pigs (PIC 327 × 1050, initially 6.3 ± 0.15 kg, mean ± SD) arranged in pens of 6 or 7 pigs were blocked by pen weight and assigned to experimental diets (7 pens/diet) consisting of SID Trp:Lys ratios of 14.7%, 16.5%, 18.4%, 20.3%, 22.1%, and 24.0% for 14 d with 1.30% SID Lys. In Exp. 2 (11 to 20 kg BW), 1,088 pigs (PIC 337 × 1050, initially 11.2 kg ± 1.35 BW, mean ± SD) arranged in pens of 24 to 27 pigs were blocked by average pig weight and assigned to experimental diets (6 pens/diet) consisting of SID Trp:Lys ratios of 14.5%, 16.5%, 18.0%, 19.5%, 21.0%, 22.5%, and 24.5% for 21 d with 30% dried distillers grains with solubles and 0.97% SID Lys. Each experiment was analyzed using general linear mixed models with heterogeneous residual variances. Competing heteroskedastic models included broken-line linear (BLL), broken-line quadratic (BLQ), and quadratic polynomial (QP). For each response, the best-fitting model was selected using Bayesian information criterion. In Exp. 1 (6 to 10 kg BW), increasing SID Trp:Lys ratio linearly increased (P < 0.05) ADG and G:F. For ADG, the best-fitting model was a QP in which the maximum ADG was estimated at 23.9% (95% confidence interval [CI]: [<14.7%, >24.0%]) SID Trp:Lys ratio. For G:F, the best-fitting model was a BLL in which the maximum G:F was estimated at 20.4% (95% CI: [14.3%, 26.5%]) SID Trp:Lys. In Exp. 2 (11 to 20 kg BW), increasing SID Trp:Lys ratio increased (P < 0.05) ADG and G:F in a quadratic manner. For ADG, the best-fitting model was a QP in which the maximum ADG was estimated at 21.2% (95% CI: [20.5%, 21.9%]) SID Trp:Lys. For G:F, BLL and BLQ models had comparable fit and estimated SID Trp:Lys requirements at 16.6% (95% CI: [16.0%, 17.3%]) and 17.1% (95% CI: [16.6%, 17.7%]), respectively. In conclusion, the estimated SID Trp:Lys requirement in Exp. 1 ranged from 20.4% for maximum G:F to 23.9% for maximum ADG, whereas in Exp. 2 it ranged from 16.6% for maximum G:F to 21.2% for maximum ADG. These results suggest that standard NRC (2012) recommendations may underestimate the SID Trp:Lys requirement for nursery pigs from 11 to 20 kg BW.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphatidylserine (PtdSer) synthesis in Chinese hamster ovary (CHO) cells occurs through the exchange of l-serine with the base moiety of phosphatidylcholine or phosphatidylethanolamine. The synthesis is depressed on the addition of PtdSer to the culture medium. A CHO cell mutant named mutant 29, whose PtdSer biosynthesis is highly resistant to this depression by exogenous PtdSer, has been isolated from CHO-K1 cells. In the present study, the PtdSer-resistant PtdSer biosynthesis in the mutant was traced to a point mutation in the PtdSer synthase I gene, pssA, resulting in the replacement of Arg-95 of the synthase by lysine. Introduction of the mutant pssA cDNA, but not the wild-type pssA cDNA, into CHO-K1 cells induced the PtdSer-resistant PtdSer biosynthesis. In a cell-free system, the serine base-exchange activity of the wild-type pssA-transfected cells was inhibited by PtdSer, but that of the mutant pssA-transfected cells was resistant to the inhibition. Like the mutant 29 cells, the mutant pssA-transfected cells grown without exogenous PtdSer exhibited an ≈2-fold increase in the cellular PtdSer level compared with that in CHO-K1 cells, although the wild-type pssA-transfected cells did not exhibit such a significant increase. These results indicated that the inhibition of PtdSer synthase I by PtdSer is essential for the maintenance of a normal PtdSer level in CHO-K1 cells and that Arg-95 of the synthase is a crucial residue for the inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The PsaF-deficient mutant 3bF of Chlamydomonas reinhardtii was used to modify PsaF by nuclear transformation and site-directed mutagenesis. Four lysine residues in the N-terminal domain of PsaF, which have been postulated to form the positively charged face of a putative amphipathic α-helical structure were altered to K12P, K16Q, K23Q, and K30Q. The interactions between plastocyanin (pc) or cytochrome c6 (cyt c6) and photosystem I (PSI) isolated from wild type and the different mutants were analyzed using crosslinking techniques and flash absorption spectroscopy. The K23Q change drastically affected crosslinking of pc to PSI and electron transfer from pc and cyt c6 to PSI. The corresponding second order rate constants for binding of pc and cyt c6 were reduced by a factor of 13 and 7, respectively. Smaller effects were observed for mutations K16Q and K30Q, whereas in K12P the binding was not changed relative to wild type. None of the mutations affected the half-life of the microsecond electron transfer performed within the intermolecular complex between the donors and PSI. The fact that these single amino acid changes within the N-terminal domain of PsaF have different effects on the electron transfer rate constants and dissociation constants for both electron donors suggests the existence of a rather precise recognition site for pc and cyt c6 that leads to the stabilization of the final electron transfer complex through electrostatic interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copolymer 1 [poly(Y,E,A,K)] is a random synthetic amino acid copolymer of l-tyrosine, l-glutamic acid, l-alanine, and l-lysine that is effective both in suppression of experimental allergic encephalomyelitis and in the treatment of relapsing forms of multiple sclerosis. Copolymer 1 binds promiscuously and very efficiently to purified HLA-DR molecules within the peptide-binding groove. In the present study, YEAK and YEAK-related copolymers and type II collagen (CII) peptide 261–273, a candidate autoantigen in rheumatoid arthritis (RA), competed for binding to RA-associated HLA-DR molecules encoded by DRB1*0101 and DRB1*0401. Moreover, these copolymers (particularly YEAK, YAK, and YEK) inhibited the response of DR1- and DR4-restricted T cell clones to the CII epitope 261–273 by >50%. This direct evidence both for competitive interactions of these copolymers and CII peptide with RA-associated HLA-DR molecules and for inhibition of CII-specific T cell responses suggests that these compounds should be evaluated in animal models for rheumatoid arthritis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hereditary tyrosinemia type I (HT1) is an autosomal recessive inborn error of metabolism caused by the deficiency of fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolism pathway. This defect results in accumulation of succinylacetone (SA) that reacts with amino acids and proteins to form stable adducts via Schiff base formation, lysine being the most reactive amino acid. HT1 patients surviving beyond infancy are at considerable risk for the development of hepatocellular carcinoma, and a high level of chromosomal breakage is observed in HT1 cells, suggesting a defect in the processing of DNA. In this paper we show that the overall DNA-ligase activity is low in HT1 cells (about 20% of the normal value) and that Okazaki fragments are rejoined at a reduced rate compared with normal fibroblasts. No mutation was found by sequencing the ligase I cDNA from HT1 cells, and the level of expression of the ligase I mRNA was similar in normal and HT1 fibroblasts, suggesting the presence of a ligase inhibitor. SA was shown to inhibit in vitro the overall DNA-ligase activity present in normal cell extracts. The activity of purified T4 DNA-ligase, whose active site is also a lysine residue, was inhibited by SA in a dose-dependent manner. These results suggest that accumulation of SA reduces the overall ligase activity in HT1 cells and indicate that metabolism errors may play a role in regulating enzymatic activities involved in DNA replication and repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hierarchy of residue density assessments and packing properties in protein structures are contrasted, including a regular density, a variety of charge densities, a hydrophobic density, a polar density, and an aromatic density. These densities are investigated by alternative distance measures and also at the interface of multiunit structures. Amino acids are divided into nine structural categories according to three secondary structure states and three solvent accessibility levels. To take account of amino acid abundance differences across protein structures, we normalize the observed density by the expected density defining a density index. Solvent accessibility levels exert the predominant influence in determinations of the regular residue density. Explicitly, the regular density values vary approximately linearly with respect to solvent accessibility levels, the linearity parameters depending on the amino acid. The charge index reveals pronounced inequalities between lysine and arginine in their interactions with acidic residues. The aromatic density calculations in all structural categories parallel the regular density calculations, indicating that the aromatic residues are distributed as a random sample of all residues. Moreover, aromatic residues are found to be over-represented in the neighborhood of all amino acids. This result might be attributed to nucleation sites and protein stability being substantially associated with aromatic residues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transporter associated with antigen processing (TAP) is essential for the transport of antigenic peptides across the membrane of the endoplasmic reticulum. In addition, TAP interacts with major histocompatibility complex class I heavy chain (HC)/β2-microglobulin (β2-m) dimers. We have cloned a cDNA encoding a TAP1/2-associated protein (TAP-A) corresponding in size and biochemical properties to tapasin, which was recently suggested to be involved in class I–TAP interaction (Sadasivan, B., Lehner, P. J., Ortmann, B., Spies, T. & Cresswell, P. (1996) Immunity 5, 103–114). The cDNA encodes a 448-residue-long ORF, including a signal peptide. The protein is predicted to be a type I membrane glycoprotein with a cytoplasmic tail containing a double-lysine motif (-KKKAE-COOH) known to maintain membrane proteins in the endoplasmic reticulum. Immunoprecipitation with anti-TAP1 or anti-TAP-A antisera demonstrated a consistent and stoichiometric association of TAP-A with TAP1/2. Class I HC and β2-m also were coprecipitated with these antisera, indicating the presence of a pentameric complex. In pulse–chase experiments, class I HC/β2-m rapidly dissociated from TAP1/2-TAP-A. We propose that TAP is a trimeric complex consisting of TAP1, TAP2, and TAP-A that interacts transiently with class I HC/β2-m. In peptide-binding assays using cross-linkable peptides and intact microsomes, TAP-A bound peptides only in the presence of ATP whereas binding of peptides to TAP1/2 was ATP-independent. This suggests a direct role of TAP-A in peptide loading onto class I HC/β2-m dimer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ATP-sensitive potassium channel (K-ATP channel) plays a key role in insulin secretion from pancreatic β-cells. It is closed by glucose metabolism, which stimulates secretion, and opened by the drug diazoxide, which inhibits insulin release. Metabolic regulation is mediated by changes in ATP and MgADP concentration, which inhibit and potentiate channel activity, respectively. The β-cell K-ATP channel consists of a pore-forming subunit, Kir6.2, and a regulatory subunit, SUR1. The site at which ATP mediates channel inhibition lies on Kir6.2, while the potentiatory action of MgADP involves the nucleotide-binding domains of SUR1. K-ATP channels are also activated by MgGTP and MgGDP. Furthermore, both nucleotides support the stimulatory actions of diazoxide. It is not known, however, whether guanine nucleotides mediate their effects by direct interaction with one or more of the K-ATP channel subunits or indirectly via a GTP-binding protein. We used a truncated form of Kir6.2, which expresses independently of SUR1, to show that GTP blocks K-ATP currents by interaction with Kir6.2 and that the potentiatory effects of GTP are endowed by SUR1. We also showed that mutation of the lysine residue in the Walker A motif of either the first (K719A) or second (K1384M) nucleotide-binding domain of SUR1 abolished both the potentiatory effects of GTP and GDP on K-ATP currents and their ability to support stimulation by diazoxide. This argues that the stimulatory effects of guanine nucleotides require the presence of both Walker A lysines.