986 resultados para lyn kinase, oligodendrocytes, brain, myelination


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following brain injury there is often a prolonged period of deteriorating psychological condition, despite neurological stability or improvement. This is presumably consequent to the remission of anosognosia and the realisation of permanently worsened status. This change is hypothesised to be directed partially by the socially mediated processes which play a role in generating self-awareness and which here direct the reconstruction of the self as a permanently injured person. However, before we can understand this process of redevelopment, we need an unbiassed technique to monitor self-awareness. Semi-structured interviews were conducted with 30 individuals with long-standing brain injuries to capture their spontaneous complaints and their level of insight into the implications of their difficulties. The focus was on what the participants said in their own words, and the extent to which self-knowledge of difficulties was spontaneously salient to the participants. Their responses were subjected to content analysis. Most participants were able to say that they had brain injuries and physical difficulties, many mentioned memory and attentional problems and a few made references to a variety of emotional disturbances. Content analysis of data from unbiassed interviews can reveal the extent to which people with brain injuries know about their difficulties. Social constructionist accounts of self-awareness and recovery are supported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: One basic problem found during rehabilitation is that people with brain injuries lack awareness of their difficulties. Research into this phenomenon has often disregarded the voices of those affected by the trauma and do not give an insider's perspective on the process through which a person with a brain injury develops awareness of their difficulties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian cells respond to nutrient deprivation by inhibiting energy consuming processes, such as proliferation and protein synthesis, and by stimulating catabolic processes, such as autophagy. p70 S6 kinase (S6K1) plays a central role during nutritional regulation of translation. S6K1 is activated by growth factors such as insulin, and by mammalian target of rapamycin (mTOR), which is itself regulated by amino acids. The Class IA phosphatidylinositol (PI) 3-kinase plays a well recognized role in the regulation of S6K1. We now present evidence that the Class III PI 3-kinase, hVps34, also regulates S6K1, and is a critical component of the nutrient sensing apparatus. Overexpression of hVps34 or the associated hVps15 kinase activates S6K1, and insulin stimulation of S6K1 is blocked by microinjection of inhibitory anti-hVps34 antibodies, overexpression of a FYVE domain construct that sequesters the hVps34 product PI(3) P, or small interfering RNA-mediated knock-down of hVps34. hVps34 is not part of the insulin input to S6K1, as it is not stimulated by insulin, and inhibition of hVps34 has no effect on phosphorylation of Akt or TSC2 in insulin-stimulated cells. However, hVps34 is inhibited by amino acid or glucose starvation, suggesting that it lies on the nutrient-regulated pathway to S6K1. Consistent with this, hVps34 is also inhibited by activation of the AMP-activated kinase, which inhibits mTOR/S6K1 in glucose-starved cells. hVps34 appears to lie upstream of mTOR, as small interfering RNA knock- down of hVps34 inhibits the phosphorylation of another mTOR substrate, eIF4E-binding protein-1 (4EBP1). Our data suggest that hVps34 is a nutrient-regulated lipid kinase that integrates amino acid and glucose inputs to mTOR and S6K1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphorylation status of the small hydrophobic (SH) protein of respiratory syncytial virus (RSV) was examined in virus-infected Vero cells. The SH protein v.,as isolated from [S-35]methionine- and [P-33]orthophosphate-labelled IRSV-infected cells and analysed by SDS-PAGE. In each case, a protein product of the expected size for the SH protein was observed. Phosphoamino acid analysis and reactivity with the phosphotyrosine specific antibody PY20 showed that the SH protein was modified by tyrosine phosphorylation. The role or tyrosine kinase activity in SH protein phosphorylation was confirmed by the use of genistein, a broad-spectrum tyrosine kinase inhibitor, to inhibit SH protein phosphorylation. Further analysis showed that the different glycosylated forms of the SH protein were phosphorylated, as was the oligomeric form of the protein. Phosphorylation of the SH protein was specifically inhibited by the mitogen-activated protein kinase (MAPK) p38 inhibitor SB203580, suggesting that SH protein phosphorylation occurs via a MAPK p38-dependent pathway. Analysis of virus-infected cells using fluorescence microscopy showed that, although the SH protein was distributed throughout the cytoplasm, it appeared to accumulate, at low levels, in the endoplasmic reticulum/Golgi complex, confirming recent observations. However, in the presence of SB203580. an increased accumulation of the SH protein in the Golgi complex was observed, although other virus structures, such as virus filaments and inclusion bodies, remained largely unaffected. These results showed that during RSV infection, the SH protein is modified by an MAPK p38-dependant tyrosine kinase activity and that this modification influences its cellular distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The attitudes members of the nursing profession hold towards survivors of brain injury may impact on the level of help, and degree of involvement they are willing to have. Given that the manner in which an individual receives their brain injury has been shown to impact on public prejudices, the importance of exploring nursing attitudes to this vulnerable group, and the subsequent impact this may have on the caring role, requires investigation. Objective To investigate the attitudes held by members of the nursing profession towards young male survivors of brain injury whose behaviour either contributed, or did not contribute, to their injury. Design Independent groups design. Setting and participants Ninety trainee and sixty-nine qualified nurses respectively drawn from a university in the south west of England and the emergency, orthopaedic and paediatric Departments of the Royal Devon and Exeter Hospital, UK. Methods Participants were randomly assigned to one of four fictional brain injury scenarios. A young male character was portrayed as sustaining a brain injury as a result of either an aneurysm, or through drug taking, with their behaviour being either a contributory or non-contributory factor. On reading these, participants were asked to complete the prejudicial evaluation scale, the social interaction scale and the helping behaviour scale. Results Analysis of variance showed that qualified nurses held more prejudicial attitudes than student nurses towards survivors of brain injury. Mean scores indicated that individuals seen as contributing towards their injury were likely to experience more prejudice (blame total = 42.35 vs. no blame total = 38.34), less social interaction (blame total = 37.54 vs. no blame total = 41.10), and less helping behaviour (blame total = 21.49 vs. no blame total = 22.34) by both groups. Conclusions Qualified nurses should be mindful of the impact their attitudes and judgements of survivors of brain injury may have on the subsequent care they provide. Greater emphasis on the effects of negative attitudes on patient interactions during training may provide nurses with the understanding to recognise and avoid challenges to their caring role in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ß-site AßPP cleaving enzyme 1 (BACE1) catalyses the rate-limiting step for production of amyloid-ß (Aß) peptides, involved in the pathological cascade underlying Alzheimer's disease (AD). Elevated BACE1 protein levels and activity have been reported in AD postmortem brains. Our study explored whether this was due to elevated BACE1 mRNA expression. RNA was prepared from five brain regions in three study groups: controls, individuals with AD, and another neurodegenerative disease group affected by either Parkinson's disease (PD) or dementia with Lewy bodies (DLB). BACE1 mRNA levels were measured using quantitative realtime PCR (qPCR) and analyzed by qbasePLUS using validated stably-expressed reference genes. Expression of glial and neuronal markers (glial fibrillary acidic protein (GFAP) and neuron-specific enolase (NSE), respectively) were also analyzed to quantify the changing activities of these cell populations in the tissue. BACE1 mRNA levels were significantly elevated in medial temporal and superior parietal gyri, compared to the PD/DLB and/or control groups. Superior frontal gryus BACE1 mRNA levels were significantly increased in the PD/DLB group, compared to AD and control groups. For the AD group, BACE1 mRNA changes were analyzed in the context of the reduced NSE mRNA, and strongly increased GFAP mRNA levels apparent as AD progressed (indicated by Braak stage). This analysis suggested that increased BACE1 mRNA expression in remaining neuronal cells may contribute to the increased BACE1 protein levels and activity found in brain regions affected by AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced glycation endproducts (AGEs) are derivatives of nonenzymatic reactions between sugars and protein or lipids, and together with AGE-specific receptors are involved in numerous pathogenic processes associated with aging and hyperglycemia. Two of the known AGE-binding proteins isolated from rat liver membranes, p60 and p90, have been partially sequenced. We now report that the N-terminal sequence of p60 exhibits 95% identity to OST-48, a 48-kDa member of the oligosaccharyltransferase complex found in microsomal membranes, while sequence analysis of p90 revealed 73% and 85% identity to the N-terminal and internal sequences, respectively, of human 80K-H, a 80- to 87-kDa protein substrate for protein kinase C. AGE-ligand and Western analyses of purified oligosaccharyltransferase complex, enriched rough endoplasmic reticulum, smooth endoplasmic reticulum, and plasma membranes from rat liver or RAW 264.7 macrophages yielded a single protein of approximately 50 kDa recognized by both anti-p60 and anti-OST-48 antibodies, and also exhibited AGE-specific binding. Immunoprecipitated OST-48 from rat rough endoplasmic reticulum fractions exhibited both AGE binding and immunoreactivity to an anti-p60 antibody. Immune IgG raised to recombinant OST-48 and 80K-H inhibited binding of AGE-bovine serum albumin to cell membranes in a dose-dependent manner. Immunostaining and flow cytometry demonstrated the surface expression of OST-48 and 80K-H on numerous cell types and tissues, including mononuclear, endothelial, renal, and brain neuronal and glial cells. We conclude that the AGE receptor components p60 and p90 are identical to OST-48, and 80K-H, respectively, and that they together contribute to the processing of AGEs from extra- and intracellular compartments and in the cellular responses associated with these pathogenic substances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many reviews have been written on protein kinase B/Akt focusing on its history dating back from the isolation of the Akt8 transforming murine leukemia virus by Staal in 1977, to the co-discovery of the Akt1 gene by the three groups in 1991 (reviewed in 7). There are currently over 22,000 publications in the PubMed database with "Akt" as a keyword - these publications describe a wealth of diverse data on the physiological functions of Akt isoforms. Many of these publications describe roles of Akt ranging from its requirement for cellular processes such as glucose uptake, cell survival and angiogenesis to roles in diseases such as cancer and ischaemia (22). This review will focus on the evidence for Akt signaling in different kidney cells during diabetes, or diabetic nephropathy (DN).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocular neovascularisation is a pathological hallmark of some forms of debilitating blindness including diabetic retinopathy, age related macular degeneration and retinopathy of prematurity. Current therapies for delaying unwanted ocular angiogenesis include laser surgery or molecular inhibition of the pro-angiogenic factor VEGF. However, targeting of angiogenic pathways other than, or in combination to VEGF, may lead to more effective and safer inhibitors of intraocular angiogenesis. In a small chemical screen using zebrafish, we identify LY294002 as an effective and selective inhibitor of both developmental and ectopic hyaloid angiogenesis in the eye. LY294002, a PI3 kinase inhibitor, exerts its anti-angiogenic effect in a dose-dependent manner, without perturbing existing vessels. Significantly, LY294002 delivered by intraocular injection, significantly inhibits ocular angiogenesis without systemic side-effects and without diminishing visual function. Thus, targeting of PI3 kinase pathways has the potential to effectively and safely treat neovascularisation in eye disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA-dependent protein kinase (DNA-PK) has been implicated in a variety of nuclear processes including DNA double strand break repair, V(D)J recombination, and transcription. A recent study showed that DNA-PK is responsible for Ser-473 phosphorylation in the hydrophobic motif of protein kinase B (PKB/Akt) in genotoxic-stressed cells, suggesting a novel role for DNA-PK in cell signaling. Here, we report that DNA-PK activity toward PKB peptides is impaired in DNA-PK knock-out mouse embryonic fibroblast cells when compared with wild type. In addition, human glioblastoma cells expressing a mutant form of DNA-PK (M059J) displayed a lower DNA-PK activity when compared with glioblastoma cells expressing wild-type DNA- PK (M059K) when PKB peptide substrates were tested. DNA- PK preferentially phosphorylated PKB on Ser-473 when compared with its known in vitro substrate, p53. A consensus hydrophobic amino acid surrounding the Ser-473 phospho-acceptor site in PKB containing amino acids Phe at position +1 and +4 and Tyr at position -1 are critical for DNA- PK activity. Thus, these data define the specificity of DNA- PK action as a Ser-473 kinase for PKB in DNA repair signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphoinositide 3-kinases produce 3'-phosphorylated phosphoinositides that act as second messengers to recruit other signalling proteins to the membrane(1). Pi3ks are activated by many extracellular stimuli and have been implicated in a variety of cellular responses(1). The Pi3k gene family is complex and the physiological roles of different classes and isoforms are not clear. The gene Pik3r1 encodes three proteins (p85 alpha, p55 alpha and p50 alpha) that serve as regulatory subunits of class I-A Pi3ks (ref. 2). Mice lacking only the p85a isoform are viable but display hypoglycaemia and increased insulin sensitivity correlating with upregulation of the p55 alpha and p50 alpha variants(3). Here we report that loss of all protein products of Pik3r1 results in perinatal lethality. We observed, among other abnormalities, extensive hepatocyte necrosis and chylous ascites, We also noted enlarged skeletal muscle fibres, brown fat necrosis and calcification of cardiac tissue. In liver and muscle, loss of the major regulatory isoform caused a great decrease in expression and activity of class I-A Pi3k catalytic subunits: nevertheless, homozygous mice still displayed hypoglycaemia, lower insulin levels and increased glucose tolerance. Our findings reveal that p55 alpha and/or p50 alpha are required for survival, but not for development of hypoglycaemia, in mice lacking p85 alpha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: GSK461364 is an ATP-competitive inhibitor of polo-like kinase 1 (Plk1). A phase I study of two schedules of intravenous GSK461364 was conducted. Experimental Design: GSK461364 was administered in escalating doses to patients with solid malignancies by two schedules, either on days 1, 8, and 15 of 28-day cycles (schedule A) or on days 1, 2, 8, 9, 15, and 16 of 28-day cycles (schedule B). Assessments included pharmacokinetic and pharmacodynamic profiles, as well as marker expression studies in pretreatment tumor biopsies. Results: Forty patients received GSK461364: 23 patients in schedule A and 17 in schedule B. Dose-limiting toxicities (DLT) in schedule A at 300 mg (2 of 7 patients) and 225 mg (1 of 8 patients) cohorts included grade 4 neutropenia and/or grade 3–4 thrombocytopenia. In schedule B, DLTs of grade 4 pulmonary emboli and grade 4 neutropenia occurred at 7 or more days at 100 mg dose level. Venous thrombotic emboli (VTE) and myelosuppression were the most common grade 3–4, drug-related events. Pharmacokinetic data indicated that AUC (area under the curve) and C max (maximum concentration) were proportional across doses, with a half-life of 9 to 13 hours. Pharmacodynamic studies in circulating tumor cells revealed an increase in phosphorylated histone H3 (pHH3) following drug administration. A best response of prolonged stable disease of more than 16 weeks occurred in 6 (15%) patients, including 4 esophageal cancer patients. Those with prolonged stable disease had greater expression of Ki-67, pHH3, and Plk1 in archived tumor biopsies. Conclusions: The final recommended phase II dose for GSK461364 was 225 mg administered intravenously in schedule A. Because of the high incidence (20%) of VTE, for further clinical evaluation, GSK461364 should involve coadministration of prophylactic anticoagulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The phosphatidylinositol 3-kinase (PI3K)-AKT signal transduction pathway is critical to cell growth and survival. In vitro functional studies indicate that the candidate schizophrenia susceptibility gene DTNBP1 influences AKT signaling to promote neuronal viability. The AKT1 gene has also been implicated in schizophrenia by association studies and decreased protein expression in the brains of schizophrenic patients. 
 Methods: The association of DTNBP1 in the Irish Study of High Density Schizophrenia Families (ISHDSF) prompted our investigation of AKT1 for association with disease in this sample. Eight single nucleotide polymorphisms spanning AKT1 were analyzed for association with schizophrenia across four definitions of affection and according to Operational Criteria Checklist of Psychotic Illness (OPCRIT) symptom scales. We examined expression of AKT1 messenger RNA from postmortem brain tissue of schizophrenic, bipolar, and control individuals. 
 Results: No single marker showed significant association, but the risk haplotype previously found over-transmitted to Caucasian schizophrenic patients was significantly under-transmitted in the ISHDSF (.01 < p < .05), across all OPCRIT symptom dimensions. Exploratory haplotype analysis confirmed association with schizophrenia toward the 5’ end of AKT1 (.008 < p < .049, uncorrected). We found significantly decreased RNA levels in prefrontal cortex of schizophrenic individuals, consistent with reduced AKT1 protein levels reported in schizophrenic brain. 
 Conclusions: The replication of association of AKT1 gene variants in a further Caucasian family sample adds support for involvement of AKT signaling in schizophrenia, perhaps encompassing a broader clinical phenotype that includes mood dysregulation. We show that AKT signaling might be compromised in schizophrenic and bipolar patients via reduced RNA expression of specific AKT isoforms.