945 resultados para luminescent excitation spectra
Resumo:
In the modern society, light is mostly powered by electricity which lead to a significant increase of the global energy consumption. In order to reduce it, different kinds of electric lamps have been developed over the years; it is now accepted that phosphorescence-based OLEDs offer many advantages over existing light technologies. Iridium complexes are considered excellent candidates for bright materials by virtue of the possibility to easily tune the wavelength of the emitted radiation, by appropriate modifications of the nature of the ligands. It is important to note that the synthesis of Ir(III) blue-emitting complexes is a very challenging goal, because of wide HOMO-LUMO gaps needed for produce a deep blue emission. During my thesis I planned the synthesis of two different series of new Ir(III) heteroleptic complexes, the C and the N series, using cyclometalating ligands containing an increasing number of nitrogens in inverse and regular position. I successfully performed in the synthesis of the required four ligands, i.e. 1-methyl-4-phenyl-1H-imidazole (2), 4-phenyl-1-methyl-1,2,3-triazole (3), 1-phenyl-1H-1,2,3-triazole (6) and 1-phenyl-1H-tetrazole (7), that differ in the number of nitrogens present in the heterocyclic ring and in the position of the phenyl ring. Therefore the cyclometalation of the obtained ligands to get the corresponding Ir(III)-complexes was attempted. I succeeded in the synthesis of two Ir(III)-complexes of the C series, and I carried out various attempts to set up the appropriate reaction conditions to get the remaining desired derivatives. The work is still in progress, and once all the desired complexes will be synthesized and characterized, a correlation between their structure and their emitting properties could be formulated analysing and comparing the photophysical data of the real compounds.
Resumo:
To propose the determination of the macromolecular baseline (MMBL) in clinical 1H MR spectra based on T(1) and T(2) differentiation using 2D fitting in FiTAID, a general Fitting Tool for Arrays of Interrelated Datasets.
Resumo:
The use of water suppression for in vivo proton MR spectroscopy diminishes the signal intensities from resonances that undergo magnetization exchange with water, particularly those downfield of water. To investigate these exchangeable resonances, an inversion transfer experiment was performed using the metabolite cycling technique for non-water-suppressed MR spectroscopy from a large brain voxel in 11 healthy volunteers at 3.0 T. The exchange rates of the most prominent peaks downfield of water were found to range from 0.5 to 8.9 s(-1), while the T(1) relaxation times in absence of exchange were found to range from 175 to 525 ms. These findings may help toward the assignments of the downfield resonances and a better understanding of the sources of contrast in chemical exchange saturation transfer imaging.
Resumo:
Vibrational energy flow and conformational transitions following excitation of the OH stretching mode of the most stable conformer of glycine are studied by classical trajectories. "On the fly" simulations with the PM3 semiempirical electronic structure method for the potential surface are used. Initial conditions are selected to correspond to the v = 1 excitation of the OH stretch. The main findings are: (1) An an equilibrium-like ratio is established between the populations of the 3 lowest-lying conformers after about 10 picoseconds. (2) There is a high probability throughout the 150 ps of the simulations for finding the molecule in geometries far from the equilibrium structures of the lowest-energy conformers. (3) Energy from the initial excited OH (v = 1) stretch flows preferentially to 5 other vibrational modes, including the bending motion of the H atom. (4) RRK theory yields conformational transition rates that deviate substantially from the classical trajectory results. Possible implication of these results for vibrational energy flow and conformational transitions in small biological molecules are discussed.
Resumo:
Laboratory exercises that confront students with decisive ouantum ohenomena nrovide valuable motivation for the kudy of quantum m&hanics. The idea that microscopic matter exists in quantized states can be demonstrated with modern versions of historic experiments: atomic line snectra. blackbodv radiation. and resonance potentials. In this experiment, we present a strikingly simple and visual method for determining the wavelength of spectral lines. This experiment not only shows the inadequacy of classical physics, but also indicates the power of optical measurements.
Resumo:
The hydroperoxy radical (HO2) plays a critical role in Earth's atmospheric chemistry as a component of many important reactions. The self-reaction of hydroperoxy radicals in the gas phase is strongly affected by the presence of water vapor. In this work, we explore the potential energy surfaces of hydroperoxy radicals hydrogen bonded to one or two water molecules, and predict atmospheric concentrations and vibrational spectra of these complexes. We predict that when the HO2 concentration is on the order of 108molecules·cm-3 at 298 K, that the number of HO2···H2O complexes is on the order of 107molecules·cm-3 and the number of HO2···(H2O)2 complexes is on the order of 106molecules·cm-3. Using the computed abundance of HO2···H2O, we predict that, at 298 K, the bimolecular rate constant for HO2···H2O + HO2 is about 10 times that for HO2 + HO2.
Resumo:
Doubly charged ion mass spectra of alkyl-substituted furans and pyrroles were obtained using a double-focusing magnetic mass spectrometer operated at 3.2 kV accelerating voltage. Molecular ions were the dominant species found in doubly charged spectra of lower molecular weight heterocydic compounds, whereas the spectra of the higher weight homologues were typified by abundant fragment ions from extensive decomposition. Measured doubly charged ionization and appearance energies ranged from 22.8 to 47.9 eV. Ionization energies were correlated with values calculated using self-consistent field–molecular orbital techniques. A multichannel diabatic curve-crossing model was developed to investigate the fundamental organic ion reactions responsible for development of doubly charged ion mass spectra. Probabilities for Landau–Zener type transitions between reactant and product curves were determined and used in the collision model to predict charge-transfer cross-sections, which compared favorably with experimental cross-sections obtained using time-of-flight techniques.