922 resultados para logic formula
Resumo:
Logic based Pattern Recognition extends the well known similarity models, where the distance measure is the base instrument for recognition. Initial part (1) of current publication in iTECH-06 reduces the logic based recognition models to the reduced disjunctive normal forms of partially defined Boolean functions. This step appears as a way to alternative pattern recognition instruments through combining metric and logic hypotheses and features, leading to studies of logic forms, hypotheses, hierarchies of hypotheses and effective algorithmic solutions. Current part (2) provides probabilistic conclusions on effective recognition by logic means in a model environment of binary attributes.
Resumo:
Cyclooxygenase 2 (COX2), a key regulatory enzyme of the prostaglandin/eicosanoid pathway, is an important target for anti-inflammatory therapy. It is highly induced by pro-inflammatory cytokines in a Nuclear factor kappa B (NFκB)-dependent manner. However, the mechanisms determining the amplitude and dynamics of this important pro-inflammatory event are poorly understood. Furthermore, there is significant difference between human and mouse COX2 expression in response to the inflammatory stimulus tumor necrosis factor alpha (TNFα). Here, we report the presence of a molecular logic AND gate composed of two NFκB response elements (NREs) which controls the expression of human COX2 in a switch-like manner. Combining quantitative kinetic modeling and thermostatistical analysis followed by experimental validation in iterative cycles, we show that the human COX2 expression machinery regulated by NFκB displays features of a logic AND gate. We propose that this provides a digital, noise-filtering mechanism for a tighter control of expression in response to TNFα, such that a threshold level of NFκB activation is required before the promoter becomes active and initiates transcription. This NFκB-regulated AND gate is absent in the mouse COX2 promoter, most likely contributing to its differential graded response in promoter activity and protein expression to TNFα. Our data suggest that the NFκB-regulated AND gate acts as a novel mechanism for controlling the expression of human COX2 to TNFα, and its absence in the mouse COX2 provides the foundation for further studies on understanding species-specific differential gene regulation.
Resumo:
* The research is supported partly by INTAS: 04-77-7173 project, http://www.intas.be
Resumo:
* This work is partially supported by CICYT (Spain) under project TIN 2005-08943-C02-001 and by UPM-CAM (Spain) under project R05/11240.
Resumo:
* This paper was made according to the program of fundamental scientific research of the Presidium of the Russian Academy of Sciences «Mathematical simulation and intellectual systems», the project "Theoretical foundation of the intellectual systems based on ontologies for intellectual support of scientific researches".
Resumo:
* This paper was made according to the program of fundamental scientific research of the Presidium of the Russian Academy of Sciences «Mathematical simulation and intellectual systems», the project "Theoretical foundation of the intellectual systems based on ontologies for intellectual support of scientific researches".
Resumo:
* The work is partially supported by Grant no. NIP917 of the Ministry of Science and Education – Republic of Bulgaria.
Resumo:
The "recursive" definition of Default Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the "recursive" fixed-point equation of Default Logic with an initial set of axioms and defaults if and only if the meaning of the fixed-point is logically equivalent to a particular modal functor of the meanings of that initial set of sentences and of the sentences in those defaults. This is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and because unlike the original "recursive" definition of Default Logic, it is easily generalized to the case where quantified variables may be shared across the scope of the components of the defaults.
Resumo:
A Quantified Autoepistemic Logic is axiomatized in a monotonic Modal Quantificational Logic whose modal laws are slightly stronger than S5. This Quantified Autoepistemic Logic obeys all the laws of First Order Logic and its L predicate obeys the laws of S5 Modal Logic in every fixed-point. It is proven that this Logic has a kernel not containing L such that L holds for a sentence if and only if that sentence is in the kernel. This result is important because it shows that L is superfluous thereby allowing the ori ginal equivalence to be simplified by eliminating L from it. It is also shown that the Kernel of Quantified Autoepistemic Logic is a generalization of Quantified Reflective Logic, which coincides with it in the propositional case.
Resumo:
Nonmonotonic Logics such as Autoepistemic Logic, Reflective Logic, and Default Logic, are usually defined in terms of set-theoretic fixed-point equations defined over deductively closed sets of sentences of First Order Logic. Such systems may also be represented as necessary equivalences in a Modal Logic stronger than S5 with the added advantage that such representations may be generalized to allow quantified variables crossing modal scopes resulting in a Quantified Autoepistemic Logic, a Quantified Autoepistemic Kernel, a Quantified Reflective Logic, and a Quantified Default Logic. Quantifiers in all these generalizations obey all the normal laws of logic including both the Barcan formula and its converse. Herein, we address the problem of solving some necessary equivalences containing universal quantifiers over modal scopes. Solutions obtained by these methods are then compared to related results obtained in the literature by Circumscription in Second Order Logic since the disjunction of all the solutions of a necessary equivalence containing just normal defaults in these Quantified Logics, is equivalent to that system.
Resumo:
Systems analysis (SA) is widely used in complex and vague problem solving. Initial stages of SA are analysis of problems and purposes to obtain problems/purposes of smaller complexity and vagueness that are combined into hierarchical structures of problems(SP)/purposes(PS). Managers have to be sure the PS and the purpose realizing system (PRS) that can achieve the PS-purposes are adequate to the problem to be solved. However, usually SP/PS are not substantiated well enough, because their development is based on a collective expertise in which logic of natural language and expert estimation methods are used. That is why scientific foundations of SA are not supposed to have been completely formed. The structure-and-purpose approach to SA based on a logic-and-linguistic simulation of problems/purposes analysis is a step towards formalization of the initial stages of SA to improve adequacy of their results, and also towards increasing quality of SA as a whole. Managers of industrial organizing systems using the approach eliminate logical errors in SP/PS at early stages of planning and so they will be able to find better decisions of complex and vague problems.
Resumo:
The paper presents a new network-flow interpretation of Łukasiewicz’s logic based on models with an increased effectiveness. The obtained results show that the presented network-flow models principally may work for multivalue logics with more than three states of the variables i.e. with a finite set of states in the interval from 0 to 1. The described models give the opportunity to formulate various logical functions. If the results from a given model that are contained in the obtained values of the arc flow functions are used as input data for other models then it is possible in Łukasiewicz’s logic to interpret successfully other sophisticated logical structures. The obtained models allow a research of Łukasiewicz’s logic with specific effective methods of the network-flow programming. It is possible successfully to use the specific peculiarities and the results pertaining to the function ‘traffic capacity of the network arcs’. Based on the introduced network-flow approach it is possible to interpret other multivalue logics – of E.Post, of L.Brauer, of Kolmogorov, etc.
Resumo:
In this paper a novel method for an application of digital image processing, Edge Detection is developed. The contemporary Fuzzy logic, a key concept of artificial intelligence helps to implement the fuzzy relative pixel value algorithms and helps to find and highlight all the edges associated with an image by checking the relative pixel values and thus provides an algorithm to abridge the concepts of digital image processing and artificial intelligence. Exhaustive scanning of an image using the windowing technique takes place which is subjected to a set of fuzzy conditions for the comparison of pixel values with adjacent pixels to check the pixel magnitude gradient in the window. After the testing of fuzzy conditions the appropriate values are allocated to the pixels in the window under testing to provide an image highlighted with all the associated edges.
Resumo:
An expansion formula for fractional derivatives given as in form of a series involving function and moments of its k-th derivative is derived. The convergence of the series is proved and an estimate of the reminder is given. The form of the fractional derivative given here is especially suitable in deriving restrictions, in a form of internal variable theory, following from the second law of thermodynamics, when applied to linear viscoelasticity of fractional derivative type.
Resumo:
2000 Mathematics Subject Classification: 26A33, 42B20