883 resultados para load balancing
Resumo:
Chemical engineering education is challenged around the world by demands and rapid changes encompassing a wide range of technical and social drivers. Graduates must be prepared for practice in increasingly diverse workplace environments in which generic or transferable attributes such as communication and teamwork together with technical excellence are mandated by prospective employers and society at large. If academe is to successfully deliver on these graduate attributes, effective curriculum design needs to include appropriate educational processes as well as course content. Conventional teacher centred approaches, stand-alone courses and retro-fitted remedial modules have not delivered the desired outcomes. Development of the broader spectrum of attributes is more likely when students are engaged with realistic and relevant experiences that demand the integration and practice of these attributes in contexts that the students find meaningful. This paper describes and evaluates The University of Queensland's Project Centred Curriculum in Chemical Engineering (PCC), a programme-wide approach to meeting these requirements. PCC strategically integrates project-based learning with more traditional instruction. Data collected shows improved levels of student attainment of generic skills with institutional and nationally benchmarked indicators showing significant increases in student perceptions of teaching quality, and overall satisfaction with the undergraduate experience. Endorsements from Australian academic, professional and industry bodies also support the approach as more effectively aligning engineering education with professional practice requirements.
Resumo:
Load-induced extravascular fluid flow has been postulated to play a role in mechanotransduction of physiological loads at the cellular level. Furthermore, the displaced fluid serves as a carrier for metabolites, nutrients, mineral precursors and osteotropic agents important for cellular activity. We hypothesise that load-induced fluid flow enhances the transport of these key substances, thus helping to regulate cellular activity associated with processes of functional adaptation and remodelling. To test this hypothesis, molecular tracer methods developed previously by our group were applied in vivo to observe and quantify the effects of load-induced fluid flow under four-point-bending loads. Preterminal tracer transport studies were carried out on 24 skeletally mature Sprague Dawley rats. Mechanical loading enhanced the transport of both small- and larger-molecular-mass tracers within the bony tissue of the tibial mid-diaphysis. Mechanical loading showed a highly significant effect on the number of periosteocytic spaces exhibiting tracer within the cross section of each bone. For all loading rates studied, the concentration of Procion Red tracer was consistently higher in the tibia subjected to pure bending loads than in the unloaded, contralateral tibia, Furthermore, the enhancement of transport was highly site-specific. In bones subjected to pure bending loads, a greater number of periosteocytic spaces exhibited the presence of tracer in the tension band of the cross section than in the compression band; this may reflect the higher strains induced in the tension band compared with the compression band within the mid-diaphysis of the rat tibia. Regardless of loading mode, the mean difference between the loaded side and the unloaded contralateral control side decreased with increasing loading frequency. Whether this reflects the length of exposure to the tracer or specific frequency effects cannot be determined by this set of experiments. These in vivo experimental results corroborate those of previous ex vivo and in vitro studies, Strain-related differences in tracer distribution provide support for the hypothesis that load-induced fluid flow plays a regulatory role in processes associated with functional adaptation.
Resumo:
This paper presents load profiles of electricity customers, using the knowledge discovery in databases (KDD) procedure, a data mining technique, to determine the load profiles for different types of customers. In this paper, the current load profiling methods are compared using data mining techniques, by analysing and evaluating these classification techniques. The objective of this study is to determine the best load profiling methods and data mining techniques to classify, detect and predict non-technical losses in the distribution sector, due to faulty metering and billing errors, as well as to gather knowledge on customer behaviour and preferences so as to gain a competitive advantage in the deregulated market. This paper focuses mainly on the comparative analysis of the classification techniques selected; a forthcoming paper will focus on the detection and prediction methods.