932 resultados para large-scale structure of the universe


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The North Atlantic eddy-driven jet is a major component of the large-scale flow in the northern hemisphere. Here we present evidence from reanalysis and ensemble forecast data for systematic flow-dependent predictability of the jet during northern hemisphere winter (DJF). It is found that when the jet is weakened or split it is both less persistent and less predictable. The lack of predictability manifests itself as the onset of an anomalously large instantaneous rate of spread of ensemble forecast members as the jet becomes weakened. This suggests that as the jet weakens or splits it enters into a state more sensitive to small differences between ensemble forecast members, rather like the sensitive region between the wings of the Lorenz attractor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper uses the structure of the Lie algebras to identify the Casimir invariant functions and Lax operators for matrix Lie groups. A novel mapping is found from the cotangent space to the dual Lie algebra which enables Lax operators to be found. The coordinate equations of motion are given in terms of the structure constants and the Hamiltonian.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UK wind-power capacity is increasing and new transmission links are proposed with Norway, where hydropower dominates the electricity mix. Weather affects both these renewable resources and the demand for electricity. The dominant large-scale pattern of Euro-Atlantic atmospheric variability is the North Atlantic Oscillation (NAO), associated with positive correlations in wind, temperature and precipitation over northern Europe. The NAO's effect on wind-power and demand in the UK and Norway is examined, focussing on March when Norwegian hydropower reserves are low and the combined power system might be most susceptible to atmospheric variations. The NCEP/NCAR meteorological reanalysis dataset (1948–2010) is used to drive simple models for demand and wind-power, and ‘demand-net-wind’ (DNW) is estimated for positive, neutral and negative NAO states. Cold, calm conditions in NAO− cause increased demand and decreased wind-power compared to other NAO states. Under a 2020 wind-power capacity scenario, the increase in DNW in NAO− relative to NAO neutral is equivalent to nearly 25% of the present-day average rate of March Norwegian hydropower usage. As the NAO varies on long timescales (months to decades), and there is potentially some skill in monthly predictions, we argue that it is important to understand its impact on European power systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tests of the new Rossby wave theories that have been developed over the past decade to account for discrepancies between theoretical wave speeds and those observed by satellite altimeters have focused primarily on the surface signature of such waves. It appears, however, that the surface signature of the waves acts only as a rather weak constraint, and that information on the vertical structure of the waves is required to better discriminate between competing theories. Due to the lack of 3-D observations, this paper uses high-resolution model data to construct realistic vertical structures of Rossby waves and compares these to structures predicted by theory. The meridional velocity of a section at 24° S in the Atlantic Ocean is pre-processed using the Radon transform to select the dominant westward signal. Normalized profiles are then constructed using three complementary methods based respectively on: (1) averaging vertical profiles of velocity, (2) diagnosing the amplitude of the Radon transform of the westward propagating signal at different depths, and (3) EOF analysis. These profiles are compared to profiles calculated using four different Rossby wave theories: standard linear theory (SLT), SLT plus mean flow, SLT plus topographic effects, and theory including mean flow and topographic effects. Our results support the classical theoretical assumption that westward propagating signals have a well-defined vertical modal structure associated with a phase speed independent of depth, in contrast with the conclusions of a recent study using the same model but for different locations in the North Atlantic. The model structures are in general surface intensified, with a sign reversal at depth in some regions, notably occurring at shallower depths in the East Atlantic. SLT provides a good fit to the model structures in the top 300 m, but grossly overestimates the sign reversal at depth. The addition of mean flow slightly improves the latter issue, but is too surface intensified. SLT plus topography rectifies the overestimation of the sign reversal, but overestimates the amplitude of the structure for much of the layer above the sign reversal. Combining the effects of mean flow and topography provided the best fit for the mean model profiles, although small errors at the surface and mid-depths are carried over from the individual effects of mean flow and topography respectively. Across the section the best fitting theory varies between SLT plus topography and topography with mean flow, with, in general, SLT plus topography performing better in the east where the sign reversal is less pronounced. None of the theories could accurately reproduce the deeper sign reversals in the west. All theories performed badly at the boundaries. The generalization of this method to other latitudes, oceans, models and baroclinic modes would provide greater insight into the variability in the ocean, while better observational data would allow verification of the model findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical simulations are performed to assess the influence of the large-scale circulation on the transition from suppressed to active convection. As a model tool, we used a coupled-column model. It consists of two cloud-resolving models which are fully coupled via a large-scale circulation which is derived from the requirement that the instantaneous domain-mean potential temperature profiles of the two columns remain close to each other. This is known as the weak-temperature gradient approach. The simulations of the transition are initialized from coupled-column simulations over non-uniform surface forcing and the transition is forced within the dry column by changing the local and/or remote surface forcings to uniform surface forcing across the columns. As the strength of the circulation is reduced to zero, moisture is recharged into the dry column and a transition to active convection occurs once the column is sufficiently moistened to sustain deep convection. Direct effects of changing surface forcing occur over the first few days only. Afterward, it is the evolution of the large-scale circulation which systematically modulates the transition. Its contributions are approximately equally divided between the heating and moistening effects. A transition time is defined to summarize the evolution from suppressed to active convection. It is the time when the rain rate within the dry column is halfway to the mean value obtained at equilibrium over uniform surface forcing. The transition time is around twice as long for a transition that is forced remotely compared to a transition that is forced locally. Simulations in which both local and remote surface forcings are changed produce intermediate transition times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the atmospheric component of a state-of-the-art climate model (HadGEM2-ES) that includes earth system components such as interactive chemistry and eight species of tropospheric aerosols considering aerosol direct, indirect, and semi-direct effects, has been used to investigate the impacts of local and non-local emissions of anthropogenic sulphur dioxide on the East Asian summer monsoon (EASM). The study focuses on the fast responses (including land surface feedbacks, but without sea surface temperature feedbacks) to sudden changes in emissions from Asia and Europe. The initial responses, over days 1–40, to Asian and European emissions show large differences. The response to Asian emissions involves a direct impact on the sulphate burden over Asia, with immediate consequences for the shortwave energy budget through aerosol–radiation and aerosol–cloud interactions. These changes lead to cooling of East Asia and a weakening of the EASM. In contrast, European emissions have no significant impact on the sulphate burden over Asia, but they induce mid-tropospheric cooling and drying over the European sector. Subsequently, however, this cold and dry anomaly is advected into Asia, where it induces atmospheric and surface feedbacks over Asia and the Western North Pacific (WNP), which also weaken the EASM. In spite of very different perturbations to the local aerosol burden in response to Asian and European sulphur dioxide emissions, the large scale pattern of changes in land–sea thermal contrast, atmospheric circulation and local precipitation over East Asia from days 40 onward exhibits similar structures, indicating a preferred response, and suggesting that emissions from both regions likely contributed to the observed weakening of the EASM. Cooling and drying of the troposphere over Asia, together with warming and moistening over the WNP, reduces the land–sea thermal contrast between the Asian continent and surrounding oceans. This leads to high sea level pressure (SLP) anomalies over Asia and low SLP anomalies over the WNP, associated with a weakened EASM. In response to emissions from both regions warming and moistening over the WNP plays an important role and determines the time scale of the response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: This study provides the first large scale analysis of the age at which adolescents in medieval England entered and completed the pubertal growth spurt. This new method has implications for expanding our knowledge of adolescent maturation across different time periods and regions. Methods: In total, 994 adolescent skeletons (10-25 years) from four urban sites in medieval England (AD 900-1550) were analysed for evidence of pubertal stage using new osteological techniques developed from the clinical literature (i.e. hamate hook development, CVM, canine mineralisation, iliac crest ossification, radial fusion). Results: Adolescents began puberty at a similar age to modern children at around 10-12 years, but the onset of menarche in girls was delayed by up to 3 years, occurring around 15 for most in the study sample and 17 years for females living in London. Modern European males usually complete their maturation by 16-18 years; medieval males took longer with the deceleration stage of the growth spurt extending as late as 21 years. Conclusions: This research provides the first attempt to directly assess the age of pubertal development in adolescents during the tenth to seventeenth centuries. Poor diet, infections, and physical exertion may have contributed to delayed development in the medieval adolescents, particularly for those living in the city of London. This study sheds new light on the nature of adolescence in the medieval period, highlighting an extended period of physical and social transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study analyses the influence of vegetation structure (i.e. leaf area index and canopy cover) and seasonal background changes on moderate-resolution imaging spectrometer (MODIS)-simulated reflectance data in open woodland. Approximately monthly spectral reflectance and transmittance field measurements (May 2011 to October 2013) of cork oak tree leaves (Quercus suber) and of the herbaceous understorey were recorded in the region of Ribatejo, Portugal. The geometric-optical and radiative transfer (GORT) model was used to simulate MODIS response (red, near-infrared) and to calculate vegetation indices, investigating their response to changes in the structure of the overstorey vegetation and to seasonal changes in the understorey using scenarios corresponding to contrasting phenological status (dry season vs. wet season). The performance of normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and enhanced vegetation index (EVI) is discussed. Results showed that SAVI and EVI were very sensitive to the emergence of background vegetation in the wet season compared to NDVI and that shading effects lead to an opposing trend in the vegetation indices. The information provided by this research can be useful to improve our understanding of the temporal dynamic of vegetation, monitored by vegetation indices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyse the global structure of the phase space of the planar planetary 2/1 mean-motion resonance in cases where the outer planet is more massive than its inner companion. Inside the resonant domain, we show the existence of two families of periodic orbits, one associated to the librational motion of resonant angle (sigma-family) and the other related to the circulatory motion of the difference in longitudes of pericentre (Delta pi-family). The well-known apsidal corotation resonances (ACR) appear as intersections between both families. A complex web of secondary resonances is also detected for low eccentricities, whose strengths and positions are dependent on the individual masses and spatial scale of the system. The construction of dynamical maps for various values of the total angular momentum shows the evolution of the families of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems. For low-moderate eccentricities, several different stable modes exist outside the ACR. For larger eccentricities, however, all stable solutions are associated to oscillations around the stationary solutions. Finally, we present a possible link between these stable families and the process of resonance capture, identifying the most probable routes from the secular region to the resonant domain, and discussing how the final resonant configuration may be affected by the extension of the chaotic layer around the resonance region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Xanthomonas axonopodis pv. citri (Xac or X citri), the modA gene codes for a periplasmic protein (ModA) that is capable of binding molybdate and tungstate as part of the ABC-type transporter required for the uptake of micronutrients. In this study, we report the crystallographic structure of the Xac ModA protein with bound molybdate. The Xac ModA structure is similar to orthologs with known three-dimensional structures and consists of two nearly symmetrical domains separated by a hinge region where the oxyanion-binding site lies. Phylogenetic analysis of different ModA orthologs based on sequence alignments revealed three groups of molybdate-binding proteins: bacterial phytopathogens, enterobacteria and soil bacteria. Even though the ModA orthologs are segregated into different groups, the ligand-binding hydrogen bonds are mostly conserved, except for Archaeglobus fulgidus ModA. A detailed discussion of hydrophobic interactions in the active site is presented and two new residues, Ala(38) and Ser(151), are shown to be part of the ligand-binding pocket. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-scale simulations of parts of the brain using detailed neuronal models to improve our understanding of brain functions are becoming a reality with the usage of supercomputers and large clusters. However, the high acquisition and maintenance cost of these computers, including the physical space, air conditioning, and electrical power, limits the number of simulations of this kind that scientists can perform. Modern commodity graphical cards, based on the CUDA platform, contain graphical processing units (GPUs) composed of hundreds of processors that can simultaneously execute thousands of threads and thus constitute a low-cost solution for many high-performance computing applications. In this work, we present a CUDA algorithm that enables the execution, on multiple GPUs, of simulations of large-scale networks composed of biologically realistic Hodgkin-Huxley neurons. The algorithm represents each neuron as a CUDA thread, which solves the set of coupled differential equations that model each neuron. Communication among neurons located in different GPUs is coordinated by the CPU. We obtained speedups of 40 for the simulation of 200k neurons that received random external input and speedups of 9 for a network with 200k neurons and 20M neuronal connections, in a single computer with two graphic boards with two GPUs each, when compared with a modern quad-core CPU. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The question posed in the title has been addressed by studying the swelling of celluloses at 20 C by twenty protic solvents, including water; linear- and branched-chain aliphatic alcohols; unsaturated aliphatic alcohols, and alkoxyalcohols. The biopolymers investigated included microcrystalline cellulose, MC, native and never-dried mercerized cotton cellulose, cotton and M-cotton, and native and never-dried mercerized eucalyptus cellulose, eucalyptus and M-eucalyptus, respectively. In most cases, better correlations with the physico-chemical properties of the solvents were obtained when the swelling was expressed as number of moles of solvent/anhydroglucose unit, nSw, rather than as % increase in sample weight. The descriptors employed in these correlations included, where available, Hildebrand`s solubility parameters, Gutmann`s acceptor and donor numbers, solvent molar volume, V(S), as well as solvatochromic parameters. The latter, employed for the first time for correlating the swelling of biopolymers, included empirical solvent polarity, E(T)(30), solvent ""acidity"", alpha(S), ""basicity"", beta(S), and dipolarity/polarizability, pi(S)*, respectively. Small regression coefficients and large sums of the squares of the residues were obtained when values of nSw were correlated with two solvent parameters. Much better correlations were obtained with three solvent parameters. The most statistically significant descriptor in the correlation equation depends on the cellulose, being pi(S)* for MC, cotton, and eucalyptus, and V(S) for M-cotton and M-eucalyptus. The best correlations were obtained with the same set of four parameters for all celluloses, namely, solvent pKa (or alpha(S)) beta(S), pi(S)*, and V(S), respectively. These results indicate that the supra-molecular structure of the biopolymer, in particular the average sizes of crystallites and micro-pores, and the presence of its chains in parallel (cellulose I) or anti-parallel (cellulose II) arrangements control its swelling. At least for the present biopolymer/solvent systems, use of solvatochromic parameters is a superior alternative to Hildebrand`s solubility parameters and/or Gutmann`s acceptor and donor numbers. The relevance of these results to the accessibility of the hydroxyl groups of cellulose, hence to its reactivity, is briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)