919 resultados para kidney calcification


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Progressive tissue fibrosis is involved in debilitating diseases that affect organs including the lungs, liver, heart, skin, and kidneys. Recent evidence suggests that tissue transglutaminase, an enzyme that crosslinks proteins, may be involved in tissue fibrosis by crosslinking and stabilizing the extracellular matrix or by recruiting and activating the large latent transforming growth factor (TGF)-β1 complex. We treated rats that had undergone 5/6-nephrectomy with two different irreversible inhibitors of transglutaminase and found that both prevented a decline in kidney function and reduced the development of glomerulosclerosis and tubulointerstitial fibrosis by up to 77% and 92%, respectively. Treatment reduced the accumulation of collagen I and collagen III, with the primary mechanism of action being direct interference with the crosslinking of extracellular matrix rather than altered regulation of TGFβ1. We conclude that inhibition of transglutaminase offers a potential therapeutic option for chronic kidney disease and other conditions that result from tissue fibrosis. Copyright © 2007 by the American Society of Nephrology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disturbances in electrolyte homeostasis are a frequent adverse side-effect of the administration of aminoglycoside antibiotics such as gentamicin, and the antineoplastic agent cis-platinum. The aims of this work were to further elucidate the site(s) and mechanism(s) by which these drugs may produce disturbances in the renal reabsorption of calcium and magnesium. These investigations were undertaken using a range of in vivo and in vitro techniques and models. Initially, a series of in vivo studies was conducted to delineate aspects of the acute and chronic effects of both drugs on renal electrolyte handling and to select and evaluate an appropriate animal model: subsequent investigations were focused on gentamicin. In a study of the acute and chronic effects of cis-platinum administration, there were pronounced acute changes in a variety of indices of nephrotoxic injury, including electrolyte excretion. Most effects resolved but there were chronic increases in the urinary excretion of calcium and magnesium. The renal response of three strains of rat (Fischer 344, Sprague-Dawley (SD), and Wistar) to a ranges of doses of gentamicin was also investigated. Drug administration produced substantially different responses between strains, in particular marked differences in calcium and magnesium excretion. The results suggested that the SD rat was an appropriately sensitive strain for use in further investigations. Acute infusion of gentamicin in the anaesthetised SD rat produced rapid, substantial increases in the fractional excretion of calcium and magnesium, while sodium and potassium output were unaffected, confirming previous results of similar experiments using F344 rats. Studies using lithium clearance measurements in the anaesthetised SD rat were undertaken to investigate the effects of gentamicin on proximal tubular calcium reabsorption. Lithium clearance was unaffected by acute gentamicin infusion, suggesting that the site of acute gentamicin-induced hypercalciuria may not be located in the proximal tubule. Inhibition of Ca2+ ATPase activity was investigated as a potential mechanism by which calcium reabsorption could be affected after aminoglycoside administration. In vitro, both Ca2+ ATPase and Na+/K+ ATPase activity could be similarly inhibited by the presence of aminoglycosides, in a dose-related manner. Whilst inhibition of Na+/K+ ATPase could be demonstrated biochemically after in vivo administration of gentamicin, there were no concurrent effects on Ca2+ ATPase activity, suggesting that inhibition of Ca2+ ATPase activity is unlikely to be a primary mechanism of aminoglycoside-induced reductions of calcium reabsorption. Histochemical studies could not discern inhibition of either Na+/K+ ATPase or Ca2+ ATPase activity after in vivo administration of gentamicin. Selection of renal cell lines for further investigative in vitro studies on the mechanisms of altered cation reabsorption was considered using MTT (3-(4,5,-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Neutral Red cytotoxicity assays. The ability of LLC-PK1 and LLC-RK1 cell lines to correctly rank a series of nephrotoxic compounds with their known nephrotoxic potency in vivo was studied. Using these cell lines grown on semi-permeable inserts, alterations in the paracellular transport of 45Ca was investigated as a possible mechanism by which gentamicin could alter calcium reabsorption in vivo. Short term exposure (I h) of LLC-RK1 cells to gentamicin, via both cell surfaces, resulted in a reduction in paracellular permeability to both transepithelial 3H-mannitol and 45Ca fluxes. When LLC-RK1 cells were exposed via the apical surface only, similar dose-related reductions were seen to those observed when cells were exposed to the drug from both sides. Short-term basal exposure to gentamicin appeared to contribute less to the observed reductions in 3H-mannitol and 45Ca fluxes. Experiments investigating transepithelial movement of 45Ca and 3H-mannitol on LLC-PK1 cells after acute gentamicin exposure were inconclusive. Longer exposure (48 h) to gentamicin caused an increase in the permeability of the monolayer and a consequent increase in transepithelial 45Ca flux in the LLC-RK1 cell line; increases in permeability of LLC-PK1 cells to 45Ca and 3H-mannitol were not apparent under the same conditions. The site and mechanism at which gentamicin, in particular, alters calcium reabsorption cannot be definitively described from these studies. However, indirect evidence from lithium clearance studies suggests that the site of the lesion is unlikely to be located in the proximal tubule. The mechanism by which gentamicin exposure alters calcium reabsorption may be by reducing paracellular permeability to calcium rather than by altering active calcium transport processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compared the molecular lipidomic profi le of LDL in patients with nondiabetic advanced renal disease and no evidence of CVD to that of age-matched controls, with the hypothesis that it would reveal proatherogenic lipid alterations. LDL was isolated from 10 normocholesterolemic patients with stage 4/5 renal disease and 10 controls, and lipids were analyzed by accurate mass LC/MS. Top-down lipidomics analysis and manual examination of the data identifi ed 352 lipid species, and automated comparative analysis demonstrated alterations in lipid profi le in disease. The total lipid and cholesterol content was unchanged, but levels of triacylglycerides and N -acyltaurines were signifi cantly increased, while phosphatidylcholines, plasmenyl ethanolamines, sulfatides, ceramides, and cholesterol sulfate were signifi cantly decreased in chronic kidney disease (CKD) patients. Chemometric analysis of individual lipid species showed very good discrimination of control and disease sample despite the small cohorts and identifi ed individual unsaturated phospholipids and triglycerides mainly responsible for the discrimination. These fi ndings illustrate the point that although the clinical biochemistry parameters may not appear abnormal, there may be important underlying lipidomic changes that contribute to disease pathology. The lipidomic profi le of CKD LDL offers potential for new biomarkers and novel insights into lipid metabolism and cardiovascular risk in this disease. -Reis, A., A. Rudnitskaya, P. Chariyavilaskul, N. Dhaun, V. Melville, J. Goddard, D. J. Webb, A. R. Pitt, and C. M. Spickett. Topdown lipidomics of low density lipoprotein reveal altered lipid profi les in advanced chronic kidney disease. J. Lipid Res. 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IMPORTANCE: Metformin is widely viewed as the best initial pharmacological option to lower glucose concentrations in patients with type 2 diabetes mellitus. However, the drug is contraindicated in many individuals with impaired kidney function because of concerns of lactic acidosis. OBJECTIVE: To assess the risk of lactic acidosis associated with metformin use in individuals with impaired kidney function. EVIDENCE ACQUISITION: In July 2014, we searched the MEDLINE and Cochrane databases for English-language articles pertaining tometformin, kidney disease, and lactic acidosis in humans between 1950 and June 2014.We excluded reviews, letters, editorials, case reports, small case series, and manuscripts that did not directly pertain to the topic area or that met other exclusion criteria. Of an original 818 articles, 65 were included in this review, including pharmacokinetic/metabolic studies, large case series, retrospective studies, meta-analyses, and a clinical trial. RESULTS: Although metformin is renally cleared, drug levels generally remain within the therapeutic range and lactate concentrations are not substantially increased when used in patients with mild to moderate chronic kidney disease (estimated glomerular filtration rates, 30-60 mL/min per 1.73m2). The overall incidence of lactic acidosis in metformin users varies across studies from approximately 3 per 100 000 person-years to 10 per 100 000 person-years and is generally indistinguishable from the background rate in the overall population with diabetes. Data suggesting an increased risk of lactic acidosis in metformin-treated patients with chronic kidney disease are limited, and no randomized controlled trials have been conducted to test the safety ofmetformin in patients with significantly impaired kidney function. Population-based studies demonstrate that metformin may be prescribed counter to prevailing guidelines suggesting a renal risk in up to 1 in 4 patients with type 2 diabetes mellitus-use which, in most reports, has not been associated with increased rates of lactic acidosis. Observational studies suggest a potential benefit from metformin on macrovascular outcomes, even in patients with prevalent renal contraindications for its use. CONCLUSIONS AND RELEVANCE: Available evidence supports cautious expansion of metformin use in patients with mild to moderate chronic kidney disease, as defined by estimated glomerular filtration rate, with appropriate dosage reductions and careful follow-up of kidney function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tropical echinoid Echinometra viridis was reared in controlled laboratory experiments at temperatures of approximately 20°C and 30°C to mimic winter and summer temperatures and at carbon dioxide (CO2) partial pressures of approximately 487 ppm-v and 805 ppm-v to simulate current and predicted-end-of-century levels. Spine material produced during the experimental period and dissolved inorganic carbon (DIC) of the corresponding culture solutions were then analyzed for stable oxygen (delta 18Oe, delta 18ODIC) and carbon (The tropical echinoid Echinometra viridis was reared in controlled laboratory experiments at temperatures of approximately 20°C and 30°C to mimic winter and summer temperatures and at carbon dioxide (CO2) partial pressures of approximately 487 ppm-v and 805 ppm-v to simulate current and predicted-end-of-century levels. Spine material produced during the experimental period and dissolved inorganic carbon (DIC) of the corresponding culture solutions were then analyzed for stable oxygen (delta18Oe, delta18ODIC) and carbon (delta13Ce, delta13CDIC) isotopic composition. Fractionation of oxygen stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (delta18O = delta18Oe - delta18ODIC) was significantly inversely correlated with seawater temperature but not significantly correlated with atmospheric pCO2. Fractionation of carbon stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (Delta delta13C = delta13Ce - delta13CDIC) was significantly positively correlated with pCO2 and significantly inversely correlated with temperature, with pCO2 functioning as the primary factor and temperature moderating the pCO2-delta13C relationship. Echinoid calcification rate was significantly inversely correlated with both delta18O and delta13C, both within treatments (i.e., pCO2 and temperature fixed) and across treatments (i.e., with effects of pCO2 and temperature controlled for through ANOVA). Therefore, calcification rate and potentially the rate of co-occurring dissolution appear to be important drivers of the kinetic isotope effects observed in the echinoid spines. Study results suggest that echinoid delta18O monitors seawater temperature, but not atmospheric pCO2, and that echinoid delta13C monitors atmospheric pCO2, with temperature moderating this relationship. These findings, coupled with echinoids' long and generally high-quality fossil record, supports prior assertions that fossil echinoid delta18O is a viable archive of paleo-seawater temperature throughout Phanerozoic time, and that delta13C merits further investigation as a potential proxy of paleo-atmospheric pCO2. However, the apparent impact of calcification rate on echinoid delta18O and delta13C suggests that paleoceanographic reconstructions derived from these proxies in fossil echinoids could be improved by incorporating the effects of growth rate.13Ce, delta13CDIC) isotopic composition. Fractionation of oxygen stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (delta18O = delta18Oe - delta18ODIC) was significantly inversely correlated with seawater temperature but not significantly correlated with atmospheric pCO2. Fractionation of carbon stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (delta13C = delta13Ce - delta13CDIC) was significantly positively correlated with pCO2 and significantly inversely correlated with temperature, with pCO2 functioning as the primary factor and temperature moderating the pCO2-delta13C relationship. Echinoid calcification rate was significantly inversely correlated with both delta18O and delta13C, both within treatments (i.e., pCO2 and temperature fixed) and across treatments (i.e., with effects of pCO2 and temperature controlled for through ANOVA). Therefore, calcification rate and potentially the rate of co-occurring dissolution appear to be important drivers of the kinetic isotope effects observed in the echinoid spines. Study results suggest that echinoid delta18O monitors seawater temperature, but not atmospheric pCO2, and that echinoid delta13C monitors atmospheric pCO2, with temperature moderating this relationship. These findings, coupled with echinoids' long and generally high-quality fossil record, supports prior assertions that fossil echinoid delta18O is a viable archive of paleo-seawater temperature throughout Phanerozoic time, and that delta13C merits further investigation as a potential proxy of paleo-atmospheric pCO2. However, the apparent impact of calcification rate on echinoid delta18O and delta13C suggests that paleoceanographic reconstructions derived from these proxies in fossil echinoids could be improved by incorporating the effects of growth rate.