921 resultados para kidney biopsy


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Progressive tissue fibrosis is involved in debilitating diseases that affect organs including the lungs, liver, heart, skin, and kidneys. Recent evidence suggests that tissue transglutaminase, an enzyme that crosslinks proteins, may be involved in tissue fibrosis by crosslinking and stabilizing the extracellular matrix or by recruiting and activating the large latent transforming growth factor (TGF)-β1 complex. We treated rats that had undergone 5/6-nephrectomy with two different irreversible inhibitors of transglutaminase and found that both prevented a decline in kidney function and reduced the development of glomerulosclerosis and tubulointerstitial fibrosis by up to 77% and 92%, respectively. Treatment reduced the accumulation of collagen I and collagen III, with the primary mechanism of action being direct interference with the crosslinking of extracellular matrix rather than altered regulation of TGFβ1. We conclude that inhibition of transglutaminase offers a potential therapeutic option for chronic kidney disease and other conditions that result from tissue fibrosis. Copyright © 2007 by the American Society of Nephrology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disturbances in electrolyte homeostasis are a frequent adverse side-effect of the administration of aminoglycoside antibiotics such as gentamicin, and the antineoplastic agent cis-platinum. The aims of this work were to further elucidate the site(s) and mechanism(s) by which these drugs may produce disturbances in the renal reabsorption of calcium and magnesium. These investigations were undertaken using a range of in vivo and in vitro techniques and models. Initially, a series of in vivo studies was conducted to delineate aspects of the acute and chronic effects of both drugs on renal electrolyte handling and to select and evaluate an appropriate animal model: subsequent investigations were focused on gentamicin. In a study of the acute and chronic effects of cis-platinum administration, there were pronounced acute changes in a variety of indices of nephrotoxic injury, including electrolyte excretion. Most effects resolved but there were chronic increases in the urinary excretion of calcium and magnesium. The renal response of three strains of rat (Fischer 344, Sprague-Dawley (SD), and Wistar) to a ranges of doses of gentamicin was also investigated. Drug administration produced substantially different responses between strains, in particular marked differences in calcium and magnesium excretion. The results suggested that the SD rat was an appropriately sensitive strain for use in further investigations. Acute infusion of gentamicin in the anaesthetised SD rat produced rapid, substantial increases in the fractional excretion of calcium and magnesium, while sodium and potassium output were unaffected, confirming previous results of similar experiments using F344 rats. Studies using lithium clearance measurements in the anaesthetised SD rat were undertaken to investigate the effects of gentamicin on proximal tubular calcium reabsorption. Lithium clearance was unaffected by acute gentamicin infusion, suggesting that the site of acute gentamicin-induced hypercalciuria may not be located in the proximal tubule. Inhibition of Ca2+ ATPase activity was investigated as a potential mechanism by which calcium reabsorption could be affected after aminoglycoside administration. In vitro, both Ca2+ ATPase and Na+/K+ ATPase activity could be similarly inhibited by the presence of aminoglycosides, in a dose-related manner. Whilst inhibition of Na+/K+ ATPase could be demonstrated biochemically after in vivo administration of gentamicin, there were no concurrent effects on Ca2+ ATPase activity, suggesting that inhibition of Ca2+ ATPase activity is unlikely to be a primary mechanism of aminoglycoside-induced reductions of calcium reabsorption. Histochemical studies could not discern inhibition of either Na+/K+ ATPase or Ca2+ ATPase activity after in vivo administration of gentamicin. Selection of renal cell lines for further investigative in vitro studies on the mechanisms of altered cation reabsorption was considered using MTT (3-(4,5,-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Neutral Red cytotoxicity assays. The ability of LLC-PK1 and LLC-RK1 cell lines to correctly rank a series of nephrotoxic compounds with their known nephrotoxic potency in vivo was studied. Using these cell lines grown on semi-permeable inserts, alterations in the paracellular transport of 45Ca was investigated as a possible mechanism by which gentamicin could alter calcium reabsorption in vivo. Short term exposure (I h) of LLC-RK1 cells to gentamicin, via both cell surfaces, resulted in a reduction in paracellular permeability to both transepithelial 3H-mannitol and 45Ca fluxes. When LLC-RK1 cells were exposed via the apical surface only, similar dose-related reductions were seen to those observed when cells were exposed to the drug from both sides. Short-term basal exposure to gentamicin appeared to contribute less to the observed reductions in 3H-mannitol and 45Ca fluxes. Experiments investigating transepithelial movement of 45Ca and 3H-mannitol on LLC-PK1 cells after acute gentamicin exposure were inconclusive. Longer exposure (48 h) to gentamicin caused an increase in the permeability of the monolayer and a consequent increase in transepithelial 45Ca flux in the LLC-RK1 cell line; increases in permeability of LLC-PK1 cells to 45Ca and 3H-mannitol were not apparent under the same conditions. The site and mechanism at which gentamicin, in particular, alters calcium reabsorption cannot be definitively described from these studies. However, indirect evidence from lithium clearance studies suggests that the site of the lesion is unlikely to be located in the proximal tubule. The mechanism by which gentamicin exposure alters calcium reabsorption may be by reducing paracellular permeability to calcium rather than by altering active calcium transport processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. The precise mechanisms underlying the development of chronic allograft nephropathy (CAN) and the associated renal fibrosis remain uncertain. The protein-crosslinking enzyme, tissue transglutaminase (tTg), has recently been implicated in renal fibrosis. Methods. We investigated the involvement of tTg and its crosslink product, [epsilon]-([gamma]-glutamyl) lysine, in 23 human kidney allografts during the early posttransplantation period and related these to changes of CAN that developed in 8 of them. Sequential biopsies were investigated using immunohistochemical, immunofluorescence, and in situ enzyme activity techniques. Results. From implantation, tTg (+266%) and [epsilon]-([gamma]-glutamyl) lysine crosslink (+256.3%) staining increased significantly (P <0.001) in a first renal biopsy performed within 3 months from transplantation. This was paralleled by elevated tTg in situ activity. The eight patients who developed CAN had further increases in immunostainable tTg (+197.2%, P <0.001) and [epsilon]-([gamma]-glutamyl) lysine bonds (+465%, P <0.01) that correlated with interstitial fibrosis (r=0.843, P =0.009 and r=0.622, P =0.05, respectively). The staining for both was predominantly located within the mesangium and the renal interstitium. Both implantation and first biopsies showed tTg and [epsilon]-([gamma]-glutamyl) lysine crosslinking levels in patients who developed CAN to be twice the levels of those with stable renal function. Cox regression analysis suggested the intensity of the early tTg staining was a better predictor of inferior allograft survival that other histologic markers (hazard ratio=4.48, P =0.04). Conclusions. tTg and [epsilon]-([gamma]-glutamyl) lysine crosslink correlated with the initiation and progression of scarring on sequential biopsies from renal-allograft recipients who experienced CAN. Elevated tTg may offer an early predictor of the development of CAN, whereas tTg manipulation may be an attractive therapeutic target

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compared the molecular lipidomic profi le of LDL in patients with nondiabetic advanced renal disease and no evidence of CVD to that of age-matched controls, with the hypothesis that it would reveal proatherogenic lipid alterations. LDL was isolated from 10 normocholesterolemic patients with stage 4/5 renal disease and 10 controls, and lipids were analyzed by accurate mass LC/MS. Top-down lipidomics analysis and manual examination of the data identifi ed 352 lipid species, and automated comparative analysis demonstrated alterations in lipid profi le in disease. The total lipid and cholesterol content was unchanged, but levels of triacylglycerides and N -acyltaurines were signifi cantly increased, while phosphatidylcholines, plasmenyl ethanolamines, sulfatides, ceramides, and cholesterol sulfate were signifi cantly decreased in chronic kidney disease (CKD) patients. Chemometric analysis of individual lipid species showed very good discrimination of control and disease sample despite the small cohorts and identifi ed individual unsaturated phospholipids and triglycerides mainly responsible for the discrimination. These fi ndings illustrate the point that although the clinical biochemistry parameters may not appear abnormal, there may be important underlying lipidomic changes that contribute to disease pathology. The lipidomic profi le of CKD LDL offers potential for new biomarkers and novel insights into lipid metabolism and cardiovascular risk in this disease. -Reis, A., A. Rudnitskaya, P. Chariyavilaskul, N. Dhaun, V. Melville, J. Goddard, D. J. Webb, A. R. Pitt, and C. M. Spickett. Topdown lipidomics of low density lipoprotein reveal altered lipid profi les in advanced chronic kidney disease. J. Lipid Res. 2015.