973 resultados para juvenility of plants
Resumo:
Since the damage of the onion thrips (Thrips tabaci Lindemann) first occurred on white cabbage in Hungary several observations have been carried out, both in Hungary and abroad, to assess varietal resistance. The use of a new evaluation method for field screening is described and the result of the monitoring of 64 varieties is reported. The most susceptible varieties were ‘Bejo 1860’, ‘SG 3164’, ‘Quisto’, ‘Green Gem’ and ‘Ramada’. On the other hand, ‘Golden Cross’, ‘Balashi’, ‘Riana’, ‘Autumn Queen’, ‘Leopard’, Ama-Daneza’ and ‘Galaxy’ suffered the least damage under natural infestation. Methods for testing the patterns of resistance are also described and evaluated. In case of plants at the few leaf growth stage significant negative correlation was found between egg mortality and the egg laying preference of adults. The results of the other antibiotic and antixenotic tests were greatly affected by differences in the physiological age and condition of the varieties.
Resumo:
The developmental responses of plants to shade underneath foliage are influenced by reductions in irradiance and shifts in spectral quality (characterized by reductions in the quantum ratio of red to far-red wavelengths, R:FR). Previous research on the influence of shadelight on leaf development has neglected the reductions in R:FR characteristic of foliage shade, and these studies have almost certainly underestimated the extent and array of developmental responses to foliage shade. We have studied the effects of reduced irradiance and R:FR on the leaf development of papaya (Carica papaya L., Caricaceae). Using experimental shadehouses, replicates of plants grown in high light conditions (0.20 of sunlight and R:FR = 0.90) were compared to low light conditions (0.02 of sunlight) with either the spectral quality of sunlight (R:FR = 0.99) or of foliage shade (F:FR = 0.26). Although many characteristics, such as leaf thickness, specific leaf weight, stomatal density, palisade parenchyma cell shape, and the ratio of mesophyll air surface/leaf surface were affected by reductions in irradiance, reduced R:FR contributed to further changes. Some characters, such as reduced chlorophyll a/b ratios, reduced lobing, and greater internode length, were affected primarily by low R:FR. The reduced R:FR of foliage shade, presumably affecting phytochrome equilibrium, strongly influences the morphology and anatomy of papaya leaves.
Resumo:
Saurochory (seed dispersal by reptiles) among crocodilians has largely been ignored, probably because these reptiles are generally assumed to be obligate carnivores incapable of digesting vegetable proteins and polysaccharides. Herein we review the literature on crocodilian diet, foraging ecology, digestive physiology and movement patterns, and provide additional empirical data from recent dietary studies of Alligator mississippiensis. We found evidence of frugivory in 13 of 18 (72.2%) species for which dietary information was available, indicating this behavior is widespread among the Crocodylia. Thirty-four families and 46 genera of plants were consumed by crocodilians. Fruit types consumed by crocodilians varied widely; over half (52.1%) were fleshy fruits. Some fruits are consumed as gastroliths or ingested incidental to prey capture; however, there is little doubt that on occasion, fruit is deliberately consumed, often in large quantities. Sensory cues involved in crocodilian frugivory are poorly understood, although airborne and waterborne cues as well as surface disturbances seem important. Crocodilians likely accrue nutritional benefits from frugivory and there are no a priori reasons to assume otherwise. Ingested seeds are regurgitated, retained in the stomach for indefinite and often lengthy periods, or passed through the digestive tract and excreted in feces. Chemical and mechanical scarification of seeds probably occurs in the stomach, but what effects these processes have on seed viability remain unknown. Because crocodilians have large territories and undertake lengthy movements, seeds are likely transported well beyond the parent plant before being voided. Little is known about the ultimate fate of seeds ingested by crocodilians; however, deposition sites could prove suitable for seed germination. Although there is no evidence for a crocodilian-specific dispersal syndrome similar to that described for other reptiles, our review strongly suggests that crocodilians function as effective agents of seed dispersal. Crocodilian saurochory offers a fertile ground for future research.
Resumo:
Metabolic flexibility may be generally defined as “the capacity for the organism to adapt fuel oxidation to fuel availability”. The metabolic diversification strategies used by individual bacteria vary greatly from the use of novel or acquired enzymes to the use of plasmid-localised genes and transporters. In this review, we describe the ability of lactobacilli to utilise a variety of carbon sources from their current or new environments in order to grow and survive. The genus Lactobacillus now includes more than 150 species, many with adaptive capabilities, broad metabolic capacity and species/strain variance. They are therefore, an informative example of a cell factory capable of adapting to new niches with differing nutritional landscapes. Indeed, lactobacilli naturally colonise and grow in a wide variety of environmental niches which include the roots and foliage of plants, silage, various fermented foods and beverages, the human vagina and the mammalian gastrointestinal tract (GIT; including the mouth, stomach, small intestine and large intestine). Here we primarily describe the metabolic flexibility of some lactobacilli isolated from the mammalian gastrointestinal tract, and we also describe some of the food-associated species with a proven ability to adapt to the GIT. As examples this review concentrates on the following species - Lb. plantarum, Lb. acidophilus, Lb. ruminis, Lb. salivarius, Lb. reuteri and Lb. sakei, to highlight the diversity and inter-relationships between the catabolic nature of species within the genus.
Resumo:
This collection contains measurements of vegetation and soil surface cover measured on the plots of the different sub-experiments at the field site of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. The following series of datasets are contained in this collection: 1. Measurements of vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the species that have been sown into the plots to create the gradient of plant diversity.
Resumo:
The present survey of species diversity of cultivated plants is the first for Syria. Some cultivated species will be added in the future, because due to the civil war in Syria, it was not possible to visit the country in the frame of the present work, as initially planned. Checklists proved to be a useful tool for overviewing the cultivated plants of selected areas and allow a characterization of the state of plant genetic resources of Syria. Syria has experienced several civilizations. Man settled in this productive land since ancient times and used its resources. However, such use has led to changes in vegetation and decline of wildlife through the country, in seashore areas, interior, mountains, and grassland. Plant domestication and growing started more than 10,000 years ago in West Asia. Since then, plentiful of economic plant species were present and used by man and his domesticated animals. Forming a part of the Fertile Crescent, where many of the world’s agricultural plants have evolved, Syria is extremely rich in agrobiodiversity. Wild progenitors of wheat and barley and wild relatives of many fruit trees such as almonds and pistachio as well as forage species are still found in marginal lands and less disturbed areas. These are threatened by a wide range of human activities, notably modern, extensive agriculture, overgrazing, overcutting and urban expansion. Syria is also considered as part of one of the main centres of origin, according to Vavilov, who had collected in Syria in 1926. The first expeditions to crop fields showed the exclusive nature of cultivated plants in Syria with a high number of endemic forms. Furthermore, Syria is a part of a biodiversity hotspot. Several studies have been performed to study agrobiodiversity in different parts of Syria, but usually on wild species. Many collections have been carried out; however, they focussed preferably on cereals and pulses, and particularly on wheat, like Vavilov’s expedition. Only 30 crops make up the major part of the conserved Syrian crop plant material in the genebank, indicating that most of the remaining 7,000 species of cultivated plants and many other valuable genetic resources species have only been included on a limited scale in the genebank collections. Although a small country (185,180 km2), Syria accommodates numerous ecosystems that allow for a large diversity of plant genetic resources for agriculture ranging from cold-requiring to subtropical crops to live and thrive. Only few references are available in this respect. The aim of the present study was to complete a checklist of Syria’s cultivated plants of agriculture and horticulture excluding plants only grown as ornamental or for forestry. Furthermore, plants taken for reforestation have not been included, if they do not have also agricultural or horticultural uses. Therefore, the inclusion of plants into the checklist follows the same principles as “Mansfeld’s Encyclopedia”. Main sources of information were published literature, floras of Syria, Lebanon and the Mediterranean, as well as Syrian printed sources in Arabic and/or English, reports from FAO on agricultural statistics in Syria, and data from ICARDA and Bioversity International. In addition, personal observations gathered during professional work in the General Commission for Scientific Agricultural Research (GCSAR) in Syria (since 1989) and participation in projects were taken into account. These were: (1) A project on “Conservation and Sustainable Use of Dry Land Agrobiodiversity in the Near East” with participation of Jordan, Lebanon, Syria, and the Palestinian Authority, focussing on landraces and wild relatives of barley, wheat, lentil, alliums, feed legumes, and fruit trees (1999–2005). (2) A project for vegetable landraces (1993–1995) in collaboration with the former International Plant Genetic Resources Institute and the UN Development Programme, in which 380 local vegetable accessions were evaluated. For medicinal plants and fruit trees I was in personal contact with departments of GCSAR and the Ministry of Agriculture and Agrarian Reform, as well as with private organizations. The resulting checklist was compared with the catalogues of crop plants of Italy and a checklist of cultivated plants of Iraq. The cultivated plant species are presented in alphabetical order according to their accepted scientific names. Each entry consists of a nomenclatural part, folk names, details of plant uses, the distribution in Syria (by provinces), a textual description, and references to literature. In total, 262 species belonging to 146 genera and 57 families were identified. Within-species (intraspecific) diversity is a significant measure of the biodiversity. Intraspecific diversity for wild plants has been and remains to be well studied, but for crop plants there are only few results. Mansfeld’s method is an actual logical contribution to such studies. Among the families, the following have the highest number of crop species: Leguminosae (34 spp.), Rosaceae (24), Gramineae (18), Labiatae (18), Compositae (14), Cruciferae (14), Cucurbitaceae (11), Rutaceae (10), Malvaceae (9), Alliaceae (7), and Anacardiaceae (7). The establishment of an effective programme for the maintenance of plant genetic resources in Syria started in the mid-1970s. This programme considered ex situ and in situ collection of the genetic resources of various field crops, fruit trees and vegetables. From a plant genetic resources viewpoint, it is clear that the homegarden is an important location for the cultivation of so-called neglected and underutilized species (neglected from a research side and underutilized from a larger economic side). Such species have so far not received much care from ecologists, botanists and agronomists, and they are considerably under-represented in genebanks.
Resumo:
Development of recombinant DNA technology allowed scientists to manipulate plant genomes, making it possible to study genes and exploit them to modify novel agronomic traits. Here, we review the current and future potential of genetic modification (GM) strategies used to increase the resistance of plants to oomycete and fungal pathogens. Numerous resistance genes (R-genes) have been cloned, and under laboratory conditions, transgenic plants have given promising results against some important plant pathogens. However, only a few have so far been deployed as commercial crop plants.GMof plants to disrupt pathogenicity, such as by inhibiting or degrading pathogenicity factors, especially by necrotrophic pathogens, has also been exploited. The potential to engineer plants for the production of antimicrobial peptides or to modify defense-signaling pathways have been successfully demonstrated under laboratory conditions. The most promising current technology is genome editing, which allows researchers to edit DNA sequences directly in their endogenous environment. The potential of this approach is discussed in detail and examples where broad-spectrum resistance has been achieved are given.
Resumo:
Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto-and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R-2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies, whether they are endophagous or ectophagous or associated with leaves or fruits.
Resumo:
The first topic area of this thesis involved studies on the accumulation and translocation of glucosinolates (GSs), bioactive secondary plant compounds, in broccoli plants. Changes in GS accumulation and gene expression levels in response to exogeneous methyl jasmonate (MeJA) treatment were analyzed in different tissue types at different developmental stages of broccoli. Greater accumulation of GSs with MeJA treatment was observed in apical leaves of broccoli seedlings and florets of plants at harvest maturity. Increases in indolyl GS in apical leaves of seedlings and florets were coupled with the up-regulation of indolyl GS biosynthesis genes. The accumulation of indolyl GSs appears to be modulated by MeJA treatment in an organ-specific manner for optimal distribution of defense substances in the plant. Metabolic profiling of hydrophilic metabolites using GC-MS demonstrated increased accumulation of various phenolics, ascorbates and amino acids in broccoli tissues after MeJA treatment. Distinct changes in carbohydrate levels observed between different tissues (vegetative leaves and floret tissues) of broccoli plants after treatment suggest that carbon metabolism is differentially modulated by MeJA treatment in different tissue types depending on sink-source relationships. Reduced levels of hexose sugars and tricarboxylic acid intermediates after MeJA treatment may reflect the increased requirement for carbon and energy needed to drive secondary product biosynthesis to accumulate metabolites for defense against insects and other herbivores. Substantial increases of indolyl and aromatic GSs after exogenous treatment with MeJA in stem and petioles of seedlings and the existence of intact indolyl-GS forms in phloem exudates suggest enhanced de novo synthesis in combination with active transport. Indoly GSs share structural similarities with the auxin, IAA, and may interact with components of the auxin transport system for intra- and extra-cellular transport or translocation. Application of the auxin efflux inhibitor, 1-naphthylphthalamic acid (NPA) reduced MeJA-mediated accumulation of indolyl GSs in broccoli florets and seedling tissues. NPA did not inhibit expression of indolyl GS biosynthesis genes shown to be upregulated by MeJA treatment or the accumulation of tryptophan, the amino acid precursor of indolyl GSs. Exogenous application of benzyl GS to Arabidopsis roots induced ectopic expression of the PIN1 protein associated with the auxin transport system similar to treatment with NPA, again suggesting GS interaction with the auxin efflux carrier system. The inhibitory effect of NPA on MeJA-mediated accumulation of GS may be due to competitive binding of NPA to auxin efflux carrier components and that GS transport is mediated by the auxin transport system. The inhibitory effect of NPA on indolyl and aromatic GS accumulation and the bioactivity of exogenous treatment of these GS compounds in PIN1 localization, Arabidopsis root growth, and gravitrophic response suggest that indolyl and aromatic GSs may be antagonistic to IAA transport and biosynthesis. Indolyl and aromatic GSs can also be potentially converted into IAA by hydrolysis. This intrinsic feature of GSs may be the part of a sophisticated regulatory process where the metabolic pathways in the plant shift from active growth to a reversible defense posture in response to biotic or abiotic stress. It seems likely that indolyl and aromatic GSs are important compounds that provide connections between jasmonate and auxin signaling. Further studies are required to reveal the regulatory mechanism for crosstalk between the two hormones. The third part of this research was to investigate effect of selenium fertilization and MeJA treatment on accumulation of GSs in broccoli florets. Increasing dietary intake of the element selenium (Se) has been shown to reduce the risk of cancer. Simultaneous enhancement of both Se and GS concentrations in broccoli floret tissue were conducted through the combined treatment of MeJA with Se fertilization. A low level of Se fertilization (concentration) with MeJA treatment displayed no significant changes in total aliphatic GS concentrations with 90% and 50% increases in indolyl and total GSs concentrations, respectively. This result suggests that Se- and GS-enriched broccoli with improved health-promoting properties can be generated by this combined treatment. The second topic of this thesis was conducted to provide basic information required to improve biomass quality and productivity and develop tools for gene transformation in Miscanthus x giganteus. The perennial rhizomatous grass, Miscanthus x giganteus is an ideal biomass crop due to its rapid vegetative growth and high biomass yield potential. As a naturally occurring sterile hybrid, M. x giganteus must be propagated vegetatively by mechanicalling divided rhizomes or from micropropagated plantlets. The effect of callus type, age and culture methods on regeneration competence was studied to improve regeneration efficiency and shorten the period of tissue culture in M. x giganteus propagation. Seven lignin biosynthesis genes and one putative flowering gene were isolated from M. x giganteus by PCR reactions using maize othologous sequences. Southern hybridization and nuclear DNA content analysis indicated that the genes isolated from M. x giganteus exist in the genome of other Miscanthus species as multiple copies. Analysis of lignin content and histological staining of lignin deposition indicated that higher lignin content is found in mature stem node tissues compared to young leaves and apical stem nodal tissues. Cell wall lignification is associated with increasing tissue maturity in Miscanthus species. RNAi and antisense constructs harboring sequences of these genes were developed to generate Miscanthus transgenic plants with suppressed of lignin biosynthesis and delayed flowering.
Resumo:
Glyphosate-resistant Echinochloa colona L. (Link) is becoming common in non-irrigated cotton systems. Echinochloa colona is a small seeded species that is not wind-blown and has a relatively short seed bank life. These characteristics make it a potential candidate to attempt to eradicate populations resistant to glyphosate when they are detected. A long term systems experiment was developed to determine the feasibility of attempting to eradicate glyphosate resistant populations in the field. After three seasons, the established Best Management Practice (BMP) strategy of two non-glyphosate actions in crop and fallow have been sufficient to significantly reduce the numbers of plants emerging, and remaining at the end of the season compared to the glyphosate only treatment. Additional eradication treatments showed slight improvement on the BMP strategy, however to date these improvements are not significant. The importance of additional eradication tactics are expected to become more noticeable as the seed bank gets driven down in subsequent seasons.
Resumo:
Green bean production accounts for 2.4% of the total value of Australian vegetable production and was Australia's tenth largest vegetable crop in 2008-2009 by value. Australian green bean production is concentrated in Queensland (51%) and Tasmania (34%) where lost productivity as a direct result of insect damage is recognised as a key threat to the industry (AUSVEG, 2011). Green beans attract a wide range of insect pests, with thrips causing the most damage to the harvestable product, the pod. Thrips populations were monitored in green bean crops in the Gatton Research Facility, Lockyer Valley, South-east Queensland, Australia from 2002-2011. Field trials were conducted to identify the thrips species present, to record fluctuation in abundance during the season and assess pod damage as a direct result of thrips. Thirteen species of thrips were recorded during this time on bean plantings, with six dominant species being collected during most of the growing season: Frankliniella occidentalis, F. schultzei, Megalurothrips usitatus, Pseudanaphothrips achaetus, Thrips imaginis and T. tabaci. Thrips numbers ranged from less than one thrips per flower to as high as 5.39 thrips per flower. The highest incidence of thrips presence found in October/November 2008, resulted in 10.74% unmarketable pods due to thrips damage, while the lowest number of thrips recorded in April 2008 caused a productivity loss of 36.65% of pods as a result of thrips damage.
Resumo:
BACKGROUND AND AIMS: Silicon has been shown to enhance the resistance of plants to fungal and bacterial pathogens. Here, the effect of potassium silicate was assessed on two cotton (Gossypium hirsutum) cultivars subsequently inoculated with Fusarium oxysporum f. sp. vasinfectum (Fov). Sicot 189 is moderately resistant whilst Sicot F-1 is the second most resistant commercial cultivar presently available in Australia. METHODS: Transmission and light microscopy were used to compare cellular modifications in root cells after these different treatments. The accumulation of phenolic compounds and lignin was measured. KEY RESULTS: Cellular alterations including the deposition of electron-dense material, degradation of fungal hyphae and occlusion of endodermal cells were more rapidly induced and more intense in endodermal and vascular regions of Sicot F-1 plants supplied with potassium silicate followed by inoculation with Fov than in similarly treated Sicot 189 plants or in silicate-treated plants of either cultivar not inoculated with Fov. Significantly more phenolic compounds were present at 7 d post-infection (dpi) in root extracts of Sicot F-1 plants treated with potassium silicate followed by inoculation with Fov compared with plants from all other treatments. The lignin concentration at 3 dpi in root material from Sicot F-1 treated with potassium silicate and inoculated with Fov was significantly higher than that from water-treated and inoculated plants. CONCLUSIONS: This study demonstrates that silicon treatment can affect cellular defence responses in cotton roots subsequently inoculated with Fov, particularly in Sicot F-1, a cultivar with greater inherent resistance to this pathogen. This suggests that silicon may interact with or initiate defence pathways faster in this cultivar than in the less resistant cultivar.
Resumo:
The phytoextraction process implies the use of plants to promote the elimination of metal contaminants in the soil. In fact, metal-accumulating plants are planted or transplanted in metal-contaminated soil and cultivated in accordance with established agricultural practices. The objective of the present study was to evaluate the productivity and Cd phytoextraction capacity of white lupine ( Lupinus albus L.) and narrow-leafed lupine ( Lupinus angustifolius L.), as well as the effect on residual Cd concentration in the soil. Both species of lupines were grown at three CdCl2 rates (0, 1, and 2 mg kg-1), under three agroclimatic conditions in Chile in 2013. In the arid zone (Pan de Azúcar, 73 mm precipitation), narrow-leafed lupine production was significantly (P < 0.05) higher than white lupine (4.55 vs. 3.26 Mg DM ha-1, respectively). In locations with higher precipitation (Santa Rosa, 670 mm; Carillanca, 880 mm), narrow-leafed lupine DM production was slightly higher than in Pan de Azúcar, but white lupine was approximately three times higher. Total plant Cd concentrations in white and narrow-leafed lupine increased as Cd rates increased in the three environments, but they were much higher in narrow-leafed lupine than white lupine; 150%, 58%, and 344% higher in Pan de Azúcar, Santa Rosa, and Carillanca, respectively. Cadmium uptake (g Cd ha-1) and apparent recovery were also higher (P < 0.05) in narrow-leafed lupine in two environments (Pan de Azúcar and Carillanca). These results suggest that narrow-leafed lupine present higher potential as phytoremediation species than white lupine.
Resumo:
Angiogenesis is a biological process through which there is the formation of new blood vessels from preexisting ones [I]. However, in pathological cases, the abnormal growth of new blood vessels promotes the development of various diseases including cancer [2) through the production of atypically large amounts of angiogenesis factors, e.g. the vascular endothelial growth factor (VEGF) [3]. The plant secondary metabolites have been the subject of several studies to evaluate their benefits to human health. In particular, the phenolic compounds have high potential for use in the food industry, including the development of functional foods. Among these, apigenin has been associated with chemopreventive effects related to cancer [4]. In fact, chemoprevention is a present-day concept and contemplates the use of medicines, biological compounds or nutrients as an intervention strategy of cancer prevention. In this work, an Arenaria montana L hydroethanolic extract was prepared and after characterization by HPLC-DAD-ESI/MS showed to be rich in apigenin derivatives. Furthermore, it exhibited ability to inhibit the phosphorylation of VEGFR-2 (vascular endothelium growth factor receptor) through an enzymatic assay. However, for the major protection of bioactive compounds, the extract was microencapsulated by an atomization/coagulation technique with alginate as the matrix material. Posteriorly, the hydroethanolic extract, in free and microencapsulated forms, was incorporated in yogurts in order to develop a novel chemopreventer food in relation to the angiogenesis process. The functionalized yogurts with A. montana extracts (free and microencapsulated) showed a nutritional value similar to the used control (yogurt without extract); however, the samples enriched with extracts revealed added-value regarding the VEGFR-2 phosphorylation inhibition ability. This effect was more effectively preserved over time in the samples functionalized with the protected extract. Overall, this work contributes to the valorization of plants rich in flavonoids, exploring its antiangiogenic potential with VEGFR-2 as target. Moreover, the atomization/coagulation technique allowed the production of viable microspheres enriched with the plant extract. The microspheres were effectively incorporated into yogurts, protecting the extract thus envisaging the development of novel functional foods with chemopreventive effects.
Resumo:
Foeniculum vulgare Mill. (fennel) and Matricaria recutita L. (chamomile) are two examples of plants with reported antioxidant and antimicrobial properties, which can be related with their composition in phenolic compounds [1,2]. Furthermore, according to previous results of our research group, the direct incorporation of the aqueous extracts showed capacity to maintain the nutritional properties of the cottage cheeses, up to 7 days of storage, while improving the antioxidant potential. However, after 14 days, a decrease in the antioxidant properties was observed [1,2], which can be related with factors such as light, moisture, temperature and pH, that can cause bioactive compounds degradation. Therefore, the aim of the present study was to prepare microcapsules with the aqueous extracts of fennel and chamomile for incorporation in cottage cheese samples, in order to protect the bioactive molecules present in the extracts, such as phenolic compounds, and prevent the decrease of the antioxidant activity observed after the 14 days period. The microspheres were prepared using an atomization/coagulation technique. Sodium alginate was used as the matrix material to produce the microspheres that were characterized through optical microscopy (OM), during and after atomization, for inspecting morphology. The encapsulation efficiency (EE) was determined by HPLC-DAD by an indirect method by analysing the coagulation solution. FTIR was also used to attest the presence of the extract inside of the alginate matrix. These microencapsulated extracts were incorporated in cottage cheese samples that were further characterized in terms of nutritional properties and antioxidant potential right after incorporation, and after 7 and 14 days of storage at 4•c. The EE was estimated as -100% and the FTIR analysis confirmed the presence of the extracts inside the microspheres. The results showed that the incorporation of the microencapsulated extracts did not cause changes in the nutritional value of cottage cheeses (through a comparison with control samples without extracts). The predominant fatty acids were palmitic (C16:0) and oleic (CI8:0) acids. The order of abundance of fatty acids was as follows: saturated fatty acids (SF A)> monounsaturatcd fatty acids (MUF A)> polyunsaturated fatty acids (PUF A). Regarding free sugars, lactose was the only sugar identified and quantified in all samples. Regarding the antioxidant activity, the samples functionalized with the microencapsulated extracts showed a higher preservation of this property even after the 7th day of storage. Overall, the incorporation of the protected plant extracts in dairy foods can be a strategy to provide health benefits to consumers.