962 resultados para investment returns
Resumo:
Geographic diversity is a fundamental tenet in portfolio management. Yet there is evidence from the US that institutional investors prefer to concentrate their real estate investments in favoured and specific areas as primary locations for the properties that occupy their portfolios. The little work done in the UK draws similar conclusions, but has so far focused only on the office sector; no work has examined this issue for the retail sector. This paper therefore examines the extent of real estate investment concentration in institutional Retail portfolios in the UK at two points in time; 1998 and 2003, and presents some comparisons with equivalent concentrations in the office sector. The findings indicate that retail investment correlates more closely with the UK urban hierarchy than that for offices when measured against employment, and is focused on urban areas with high populations and large population densities which have larger numbers of retail units in which to invest.
Resumo:
Volatility, or the variability of the underlying asset, is one of the key fundamental components of property derivative pricing and in the application of real option models in development analysis. There has been relatively little work on volatility in real terms of its application to property derivatives and the real options analysis. Most research on volatility stems from investment performance (Nathakumaran & Newell (1995), Brown & Matysiak 2000, Booth & Matysiak 2001). Historic standard deviation is often used as a proxy for volatility and there has been a reliance on indices, which are subject to valuation smoothing effects. Transaction prices are considered to be more volatile than the traditional standard deviations of appraisal based indices. This could lead, arguably, to inefficiencies and mis-pricing, particularly if it is also accepted that changes evolve randomly over time and where future volatility and not an ex-post measure is the key (Sing 1998). If history does not repeat, or provides an unreliable measure, then estimating model based (implied) volatility is an alternative approach (Patel & Sing 2000). This paper is the first of two that employ alternative approaches to calculating and capturing volatility in UK real estate for the purposes of applying the measure to derivative pricing and real option models. It draws on a uniquely constructed IPD/Gerald Eve transactions database, containing over 21,000 properties over the period 1983-2005. In this first paper the magnitude of historic amplification associated with asset returns by sector and geographic spread is looked at. In the subsequent paper the focus will be upon model based (implied) volatility.
Resumo:
The increased frequency in reporting UK property performance figures, coupled with the acceptance of the IPD database as the market standard, has enabled property to be analysed on a comparable level with other more frequently traded assets. The most widely utilised theory for pricing financial assets, the Capital Asset Pricing Model (CAPM), gives market (systematic) risk, beta, centre stage. This paper seeks to measure the level of systematic risk (beta) across various property types, market conditions and investment holding periods. This paper extends the authors’ previous work on investment holding periods and how excess returns (alpha) relate to those holding periods. We draw on the uniquely constructed IPD/Gerald Eve transactions database, containing over 20,000 properties over the period 1983-2005. This research allows us to confirm our initial findings that properties held over longer periods perform in line with overall market performance. One implication of this is that over the long-term performance may be no different from an index tracking approach.
Resumo:
The question as to whether active management adds any value above that of the funds investment policy is one of continual interest to investors. In order to investigate this issue in the UK real estate market we examine a number of related questions. First, how much return variability is explained by investment policy? Second, how similar are the policies across funds? Third, how much of a fund’s return is determined by investment policy? Finally, how was this added value achieved? Using data for 19 real estate funds we find that investment policy explains less than half of the variability in returns over time, nothing of the variation across funds and that more than 100% of a level of return is attributed to investment policy. The results also show UK real estate fund focus exclusively on trying to pick winners to add value and that in pursuit of active return fund mangers incur high tracking error risk, consequently, successful active management is very difficult to achieve. In addition, the results are dependent on the benchmark used to represent the investment policy of the fund. Nonetheless, active management can indeed add value to a real estate funds performance. This is the good news. The bad news is adding value is much more difficult to achieve than is generally accepted.
Resumo:
Multi-factor approaches to analysis of real estate returns have, since the pioneering work of Chan, Hendershott and Sanders (1990), emphasised a macro-variables approach in preference to the latent factor approach that formed the original basis of the arbitrage pricing theory. With increasing use of high frequency data and trading strategies and with a growing emphasis on the risks of extreme events, the macro-variable procedure has some deficiencies. This paper explores a third way, with the use of an alternative to the standard principal components approach – independent components analysis (ICA). ICA seeks higher moment independence and maximises in relation to a chosen risk parameter. We apply an ICA based on kurtosis maximisation to weekly US REIT data using a kurtosis maximising algorithm. The results show that ICA is successful in capturing the kurtosis characteristics of REIT returns, offering possibilities for the development of risk management strategies that are sensitive to extreme events and tail distributions.
Resumo:
Investment risk models with infinite variance provide a better description of distributions of individual property returns in the IPD UK database over the period 1981 to 2003 than normally distributed risk models. This finding mirrors results in the US and Australia using identical methodology. Real estate investment risk is heteroskedastic, but the characteristic exponent of the investment risk function is constant across time – yet it may vary by property type. Asset diversification is far less effective at reducing the impact of non‐systematic investment risk on real estate portfolios than in the case of assets with normally distributed investment risk. The results, therefore, indicate that multi‐risk factor portfolio allocation models based on measures of investment codependence from finite‐variance statistics are ineffective in the real estate context
Resumo:
Investing in real estate markets overseas means venturing into the unknown, where you meet unfamiliar political and economic environments, unstable currencies, strange cultures and languages, and so although the advantages of international diversification might appear attractive, the risks of international investment must not be overlooked. However, capital markets are becoming global markets, and commercial real estate markets are no exception, accordingly despite the difficulties posed by venturing overseas no investor can overlook the potential international investment holds out. Thus, what strategies are appropriate for capitalising on this potential? Three issues must be considered: (1) the potential of the countries real estate market in general; (2) the potential of the individual market sectors; and (3) the investment process itself. Although each step in foreign real estate investment is critical, the initial assessment of opportunities is especially important. Various methods can be used to achieve this but a formal and systematic analysis of aggregate market potential should prove particularly fruitful. The work reported here, therefore, develops and illustrates such a methodology for the over 50 international real estate markets.
Resumo:
Following the attack on the World Trade Center on 9/11 volatility of daily returns of the US stock market rose sharply. This increase in volatility may reflect fundamental changes in the economic determinants of prices such as expected earnings, interest rates, real growth and inflation. Alternatively, the increase in volatility may simply reflect the effects of increased uncertainty in the financial markets. This study therefore sets out to determine if the effects of the attack on the World Trade Center on 9/11 had a fundamental or purely financial impact on US real estate returns. In order to do this we compare pre- and post-9/11 crisis returns for a number of US REIT indexes using an approach suggested by French and Roll (1986), as extended by Tuluca et al (2003). In general we find no evidence that the effects of 9/11 had a fundamental effect on REIT returns. In other words, we find that the effect of the attack on the World Trade Center on 9/11 had only a financial effect on REIT returns and therefore was transitory.