960 resultados para intestine epithelium
Resumo:
Two peptides with substance-P-like immunoreactivity were isolated in pure form from an extract of the brain of the elasmobranch fish, Scyliorhinus canicula (european common dogfish). One peptide was identical to scyliorhinin I, previously identified in dogfish intestine, and the second was the undecapeptide Lys-Pro-Arg-Pro-Gly-Gln-Phe-Phe-Gly-Leu-Met-CONH2 which is structurally similar to mammalian substance P Scyliorhinin II or a peptide analogous to mammalian neurokinin A were not detected in the extract. Synthetic dogfish substance P ([Lys1, Arg3, Gly5]substance P) was approximately threefold more potent than mammalian substance P (K(d) = 0.21 +/- 0.11 nM versus K(d)= 0.74 +/- 0.17 nM; mean +/- SD; n = 6) in inhibiting the binding of I-125-labelled substance P to neurokinin (NK1) receptors in rat submandibular gland membranes. The vasodilator action of tachykinins in mammals is mediated primarily through interaction with NK1 receptors. Bolus intravenous injections of [Lys1, Arg3, Gly5]substance P (100 pmol) and scyliorhinin I (100 pmol) produced appreciable (>4 kPa) decreases in arterial blood pressure in the rat whereas intravenous injections of up to 5 nmol of the peptides into conscious, unrestrained dogfish produced no change in arterial blood pressure, pulse amplitude or heart rate. Injections of greater amounts of the peptides (10-50 nmol) produced a slight increase (400-667 Pa) in blood pressure. The data indicate that mammalian-type NK1 tachykinin receptors are not involved in cardiovascular regulation in elasmobranch fish.
Resumo:
Intestinal permeability tests have been used to screen for a wide range of small intestinal diseases, including coeliac disease and enteric infections. Several probe molecules have been used to investigate intestinal permeability including monosaccharides, disaccharides, 51Cr-EDTA and polyethyleneglycol. While many factors may affect intestinal permeability tests, the use of two probe molecules, for example, lactulose and mannitol, and the expression of the result as a ratio minimises the effects of these extraneous factors. Rendering the test solution hyperosmolar was also found to increase the sensitivity of the test in detecting coeliac disease. Intestinal permeability is characteristically elevated in untreated coeliac disease, with a sensitivity of up to 96% for the dual sugar techniques. The reason for this is a consistent increase in the absorption of lactulose (via the paracellular route) due to increased "leakiness" of the intestine and a reduction in the absorption of mannitol (via the transcellular route) due to a reduction in surface area as a result of villous atrophy. The intestinal permeability test allows subjects to be selected for jejunal biopsy in whom the clinical features are compatible with coeliac disease and in timing a follow-up biopsy. It has been postulated that raised intestinal permeability may be involved in the pathogenesis of coeliac disease. Recently, serum measurements of the probe molecules may have a valuable role, particularly in paediatric patients. Sucrose permeability has also been proposed as an accurate marker of adult coeliac disease and shows promise as a noninvasive test.
Resumo:
Coeliac disease is a common chronic inflammatory enteropathy characterized by villous atrophy and crypt hyperplasia in the small intestine. The mechanism of the intestinal damage in coeliac disease remains unclear. Glucagon-like peptide (GLP)-2 is an enterotrophic peptide that causes crypt hyperplasia and intestinal cell proliferation. We postulate that GLP-2 may be involved in the mucosal changes found in coeliac disease.
Resumo:
Signaling between the epithelium and stromal cells is crucial for growth, differentiation, and repair of the epithelium. Although the retinoblastoma protein (Rb) is known to regulate the growth of keratinocytes in a cell-autonomous manner, here we describe a function of Rb in the stromal compartment. We find that Rb depletion in fibroblasts leads to inhibition of differentiation and enhanced proliferation of the epithelium. Analysis of conditioned medium identified that keratinocyte growth factor (KGF) levels were elevated following Rb depletion. These findings were also observed with organotypic co-cultures. Treatment of keratinocytes with KGF inhibited differentiation and enhanced keratinocyte proliferation, whereas reduction of KGF levels in Rb-depleted fibroblasts was able to restore expression of differentiation markers. Our findings suggest a crucial role for dermal fibroblasts in regulating the differentiation and proliferation of keratinocytes, and we demonstrate a role for stromal Rb in this cross-talk.Journal of Investigative Dermatology advance online publication, 14 June 2012;doi:10.1038/jid.2012.201.
Resumo:
An optimised indirect peroxidase-anti-peroxidase immunohistochemical technique was used to detect endogenous biotin in frozen tissue sections from biotin-supplemented and biotin-depleted pigs and chickens. A monoclonal anti-biotin antibody was used as primary antibody in this technique. Immunoreactive biotin was detected in many tissues of both species including liver, kidney, pancreas, adipose tissue, adrenal gland, testis, brain, choroid plexus, cardiac and skeletal muscle, epithelium of the respiratory and digestive systems, skin and lymphoid tissues. The specificity of immunostaining for biotin was confirmed by the finding of reduced staining intensities in tissues of biotin-depleted animals compared to those of biotin-supplemented animals. The results of this study suggest that biotin has metabolic functions in a wider range of tissues than previously known. They also indicate that endogenous tissue biotin should be considered as a source of false positive staining when immunohistochemical or histochemical techniques which use avidin or streptavidin reagents or anti-biotin antibodies as components of the detection system, are applied to tissue sections.
Resumo:
Elafin is a 6-kDa innate immune protein present at several epithelial surfaces including the pulmonary epithelium. It is a canonical protease inhibitor of two neutrophil serine proteases [neutrophil elastase (NE) and proteinase 3] with the capacity to covalently bind extracellular matrix proteins by transglutamination. In addition to these properties, elafin also possesses antimicrobial and immunomodulatory activities. The aim of the present study was to investigate the effect of Pseudomonas aeruginosa proteases on elafin function. We found that P aeruginosa PAO1-conditioned medium and two purified Pseudomonas metalloproteases, pseudolysin (elastase) and aeruginolysin (alkaline protease), are able to cleave recombinant elafin. Pseudolysin was shown to inactivate the anti-NE activity of elafin by cleaving its protease-binding loop. Interestingly, antibacterial properties of elafin against PAO1 were found to be unaffected after pseudolysin treatment. In contrast to pseudolysin, aeruginolysin failed to inactivate the inhibitory properties of elafin against NE. Aeruginolysin cleaves elafin at the amino-terminal Lys6-Gly7 peptide bond, resulting in a decreased ability to covalently bind purified fibronectin following transglutaminase activity. In conclusion, this study provides evidence that elafin is susceptible to proteolytic cleavage at alternative sites by P aeruginosa metalloproteinases, which can affect different biological functions of elafin.
Resumo:
Gyps vultures across India are declining rapidly and the NSAID diclofenac has been shown to be the major cause. Vultures scavenge livestock carcasses that have been treated with diclofenac within the days preceding death. We present data on diclofenac disposition in Indian cow and goat, and field data on the prevalence of diclofenac in carcases in the environment. In the disposition experiment, animals were treated with a single intramuscular injection of diclofenac at 1000 microg kg-1 bw. In cow, diclofenac was detectable in liver, kidney and intestine up to 71 h post-treatment; in plasma, half-life was 12.2 h. In goat, tissue residues were undetectable after 26 h. Prevalence of diclofenac in liver from 36 dead livestock collected in the field was 13.9%. Data suggest that diclofenac residues in Indian cow and goat are short-lived, but diclofenac prevalence in carcasses available to vultures may still be very high.
Resumo:
Although earthworms have been found to inhabit arsenic-rich soils in the U.K., the mode of arsenic detoxification is currently unknown. Biochemical analyses and subcellular localization studies have indicated that As3+-thiol complexes may be involved; however, it is not known whether arsenic is capable of inducing the expression of metallothionein (MT) in earthworms. The specific aims of this paper were (a) to detect and gain an atomic characterization of ligand complexing by X-ray absorption spectrometry (XAS), and (b) to employ a polyclonal antibody raised against an earthworm MT isoform (w-MT2) to detect and localize the metalloprotein by immunoperoxidase histochemistry in the tissues of earthworms sampled from arsenic-rich soil. Data suggested that the proportion of arsenate to sulfur-bound species varies within specific earthworm tissues. Although some arsenic appeared to be in the form of arsenobetaine, the arsenic within the chlorogogenous tissue was predominantly coordinated with S in the form of -SH groups. This suggests the presence of an As::MT complex. Indeed, MT was detectable with a distinctly localized tissue and cellular distribution. While MT was not detectable in the surface epithelium or in the body wall musculature, immunoperoxidase histochemistry identified the presence of MT in chloragocytes around blood vessels, within the typhlosolar fold, and in the peri-intestinal region. Focal immunostaining was also detectable in a cohort of cells in the intestinal wall. The results of this study support the hypothesis that arsenic induces MT expression and is sequestered by the metalloprotein in certain target cells and tissues.
Resumo:
Bacteroides fragilis is a constituent of the normal resident microbiota of the human intestine and is the gram-negative obligately anaerobic bacterium most frequently isolated from clinical infection. Surface polysaccharides are implicated as potential virulence determinants. We present evidence of within strain immunochemical variation of surface polysaccharides in populations that are noncapsulate by light microscopy as determined by monoclonal antibody labelling. Expression of individual epitopes can be enriched from a population of an individual strain by use of immunomagnetic beads. Also, individual colonies in which either >94% or 94% of the bacteria carry a given epitope, there is no enrichment for other epitopes recognized by different polysaccharide-specific monoclonal antibodies. This intrastrain variation has important implications for the development of potential vaccines or immunodiagnostic tests.
Resumo:
Background and Aim: Inflammatory bowel diseases (IBD) are immune-mediated chronic diseases that are characterized by an overreaction of the intestinal immune system to the intestinal microbiota. VSL#3, a mixture of 8 different lactic acid bacteria, is a clinically relevant probiotic compound in the context of IBD, but the bacterial structures and molecular mechanisms underlying the observed protective effects are largely unknown. The intestinal epithelium plays a very important role in the maintenance of the intestinal homeostasis, as the intestinal epithelial cells (IEC) are capable of sensing, processing, and reacting upon signals from the luminal microbiota and the intestinal immune system. This immune regulatory function of the IEC is lost in IBD owing to dysregulated activation of the IEC. Thus, the aim of this study was to reveal protective mechanisms of VSL#3 on IEC function.
Results: In vitro, VSL#3 was found to selectively inhibit activation-induced secretion of the T-cell chemokine interferon-inducible protein (IP)-10 in IEC. Cell wall-associated proteins of VSL#3-derived Lactobacillus casei (L. casei) were identified to be the active anti-inflammatory component of VSL#3. Mechanistically, L. casei did not impair initial IP-10 protein production, but induced posttranslational degradation of IP-10 in IEC. Feeding studies in tumor necrosis factor (TNF)(Delta ARE/+) mice, a mouse model for experimental ileitis, revealed that neither VSL#3 nor L. casei is capable of reducing ileal inflammation. Even preweaning feeding of VSL#3 did not prevent the development of severe ileitis in TNF Delta ARE/+ mice. In contrast, VSL#3 feeding studies in IL-10-/- mice, a model for experimental colitis, revealed that VSL#3 has local, intestinal compartment-specific protective effects on the development of inflammation. Reduced histopathologic inflammation in the cecum of IL-10-/- mice after VSL#3 treatment was found to correlate with reduced levels of IP-10 protein in primary cecal epithelial cells.
Conclusion and Outlook: These results suggest that the inhibitory effect of VSL#3-derived L. casei on IP-10 secretion in IEC is an important probiotic mechanism that contributes to the anti-inflammatory effects of VSL#3 in specific subsets of patients with IBD. An important future aim is the identification of the active probiotic protein, which could serve as a basis for the development of new efficient therapies in the context of IBD.
Resumo:
Background: Clinical and experimental studies suggest that the probiotic mixture VSL#3 has protective activities in the context of inflammatory bowel disease (IBD). The aim of the study was to reveal bacterial strain-specific molecular mechanisms underlying the anti-inflammatory potential of VSL#3 in intestinal epithelial cells (IEC).
Methodology/Principal Findings: VSL#3 inhibited TNF-induced secretion of the T-cell chemokine interferon-inducible protein (IP-10) in Mode-K cells. Lactobacillus casei (L. casei) cell surface proteins were identified as active anti-inflammatory components of VSL#3. Interestingly, L. casei failed to block TNF-induced IP-10 promoter activity or IP-10 gene transcription at the mRNA expression level but completely inhibited IP-10 protein secretion as well as IP-10-mediated T-cell transmigration. Kinetic studies, pulse-chase experiments and the use of a pharmacological inhibitor for the export machinery (brefeldin A) showed that L. casei did not impair initial IP-10 production but decreased intracellular IP-10 protein stability as a result of blocked IP-10 secretion. Although L. casei induced IP-10 ubiquitination, the inhibition of proteasomal or lysosomal degradation did not prevent the loss of intracellular IP-10. Most important for the mechanistic understanding, the inhibition of vesicular trafficking by 3-methyladenine (3-MA) inhibited IP-10 but not IL-6 expression, mimicking the inhibitory effects of L. casei. These findings suggest that L. casei impairs vesicular pathways important for the secretion of IP-10, followed by subsequent degradation of the proinflammatory chemokine. Feeding studies in TNF Delta ARE and IL-10(-/-) mice revealed a compartimentalized protection of VSL#3 on the development of cecal but not on ileal or colonic inflammation. Consistent with reduced tissue pathology in IL-10(-/-) mice, IP-10 protein expression was reduced in primary epithelial cells.
Conclusions/Significance: We demonstrate segment specific effects of probiotic intervention that correlate with reduced IP-10 protein expression in the native epithelium. Furthermore, we revealed post-translational degradation of IP-10 protein in IEC to be the molecular mechanism underlying the anti-inflammatory effect.
Resumo:
Esophageal adenocarcinoma develops on a background of Barrett's esophagus. A number of risk factors have been linked to both conditions, including gastroesophageal reflux and smoking. However, the molecular mechanisms by which these factors influence disease progression remain unclear. One possibility is that risk factors generate promutagenic DNA damage in the esophagus. The comet assay was used to measure DNA damage in esophageal (Barrett's and squamous) and gastric mucosa of Barrett's patients with (n = 24) or without (n = 50) associated adenocarcinoma or high-grade dysplasia in comparison with control patients (squamous mucosa) without Barrett's esophagus (n = 64). Patients completed a questionnaire detailing exposure to some of the known risk factors for Barrett's esophagus and adenocarcinoma. In Barrett's esophagus patients, DNA damage was higher in Barrett's mucosa compared with normal esophageal and gastric mucosa (P < 0.001). In addition, the highest quartile of DNA damage in Barrett's mucosa was associated with an increased risk (odds ratio, 9.4; 95% confidence interval, 1.1-83.4; P = 0.044) of developing adenocarcinoma or high-grade dysplasia compared with DNA damage levels in the lowest quartile. Smoking was associated with higher DNA damage in squamous epithelium in all patient groups (P < 0.01) and in Barrett's mucosa (P < 0.05) in Barrett's esophagus patients only. In controls only, current reflux was associated with higher DNA damage, whereas anti-inflammatory drug use resulted in lower levels. Collectively, these data imply a genotoxic insult to the premalignaint Barrett's mucosa that may explain the genetic instability in this tissue and the progression to adenocarcinoma. There is an indication for a role for smoking in inducing DNA damage in esophageal mucosa but an understanding of the role of reflux requires further investigation.
Resumo:
Nontypable Haemophilus influenzae (NTHi) is a Gram-negative, non-capsulated human bacterial pathogen, a major cause of a repertoire of respiratory infections, and intimately associated with persistent lung bacterial colonization in patients suffering from chronic obstructive pulmonary disease (COPD). Despite its medical relevance, relatively little is known about its mechanisms of pathogenicity. In this study, we found that NTHi invades the airway epithelium by a distinct mechanism, requiring microtubule assembly, lipid rafts integrity, and activation of phosphatidylinositol 3-kinase (PI3K) signalling. We found that the majority of intracellular bacteria are located inside an acidic subcellular compartment, in a metabolically active and non-proliferative state. This NTHi-containing vacuole (NTHi-CV) is endowed with late endosome features, co-localizing with LysoTracker, lamp-1, lamp-2, CD63 and Rab7. The NTHi-CV does not acquire Golgi- or autophagy-related markers. These observations were extended to immortalized and primary human airway epithelial cells. By using NTHi clinical isolates expressing different amounts of phosphocholine (PCho), a major modification of NTHi lipooligosaccharide, on their surfaces, and an isogenic lic1BC mutant strain lacking PCho, we showed that PCho is not responsible for NTHi intracellular location. In sum, this study indicates that NTHi can survive inside airway epithelial cells.
Resumo:
Aim: To evaluate the distribution of fundus autofluorescence in patients with age-related macular degeneration and choroidal neovascularisation (CNV). Methods: Colour fundus photographs, fundus fluorescein angiograms (FFA) and fundus autofluorescence images were obtained from a group of 40 patients (43 eyes) with age-related macular degeneration and purely classic or occult CNV. Only patients with newly diagnosed CNV and in whom autofluorescence images were obtained within 2 weeks from FFA were included. The distribution of autofluorescence was qualitatively evaluated, and the findings compared with those from colour fundus photographs and FFA. Results: 29 (67%) eyes had classic CNV and 14 (33%) had occult CNV. In 26 (90%) eyes with classic CNV, a low autofluorescence signal was detected at the site of the CNV; in 7 (50%) eyes with occult CNV, multiple foci of low autofluorescence signal were detected. Outside the area affected by the lesion, homogeneous autofluorescence was observed in most of the cases (n = 33, 77%). Similarly, homogeneous autofluorescence was commonly observed in fellow eyes (62%). A pattern of focal increased autofluorescence was rarely seen in eyes with CNV (n = 4, 9%) or in fellow eyes (n = 4, 15%). In 11 of 43 (25%) eyes, areas of increased autofluorescence, other than a pattern of focal increased autofluorescence, were detected. In four patients, autofluorescence images had been obtained before the development of CNV; in none was any increased autofluorescence detected before the formation of CNV. Conclusions: Distinct patterns of autofluorescence were observed in eyes with pure classic and occult CNV. Increased autofluorescence was rarely seen in eyes with CNV and in fellow eyes, suggesting that increased autofluorescence, and thus, retinal pigment epithelium lipofuscin, may not play an essential part in the formation of CNV.
Resumo:
Purpose: The purpose of this study was to evaluate "in vivo" safety of trypan blue (TB) in patients undergoing TB-assisted internal limiting membrane or epiretinal membrane peeling. Methods: Prospective study including 21 patients (21 eyes) with full-thickness macular hole and/or epiretinal membrane undergoing TB-assisted internal limiting membrane/epiretinal membrane peeling. Main outcome measures included distance visual acuity, near visual acuity, amplitude of P50 and N95 of the pattern electroretinogram, and fundus autofluorescence; these were assessed preoperatively, at 6 months (n = 21) and 12 months (n = 10) postoperatively. Results: There was a statistically significant improvement in distance visual acuity, near visual acuity, P50, and N95 amplitude at 6 months and 12 months postoperatively. The mean logarithm of the minimum angle of resolution distance visual acuity and near visual acuity improved from baseline by 0.31 (SD 0.37) and 0.17 (SD 0.31) at 6 months, respectively, and by 0.4 (SD 0.25) and 0.35 (SD 0.28) at 12 months, respectively. The mean P50 and N95 component amplitudes improved by 28% compared with baseline at 6 months (P50 0.4 [SD 0.8]; N95 0.53 [SD 1.07]) and by 63% at 12 months (P50 0.9 [0.85]; N95 1.04 [1.34]). Autofluorescence did not demonstrate damage to the retinal pigment epithelium attributable to TB. Conclusion: No deleterious effects of TB were observed in this study. Copyright © 2011 Lippincott Williams &Wilkins.