973 resultados para insect pests
Resumo:
The cuticle of the silkworm Bombyx mori was demonstrated to contain pro-phenol oxidase [zymogen of phenol oxidase (monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1)] and its activating cascade. The activating cascade contained at least one serine proteinase zymogen (latent form of pro-phenol oxidase activating enzyme). When the extracted cascade components were incubated with Ca2+, the latent form of pro-phenol oxidase activating enzyme was itself activated and, in turn, converted through a limited proteolysis of pro-phenol oxidase to phenol oxidase. Immuno-gold localization of prophenol oxidase in the cuticle using a cross-reactive hemolymph anti-pro-phenol oxidase antibody revealed a random distribution of this enzyme in the nonlamellate endocuticle and a specific orderly arrayed pattern along the basal border of the laminae in the lamellate endocuticle of the body wall. Furthermore, prophenol oxidase was randomly distributed in the taenidial cushion of the tracheal cuticle. At the time of pro-phenol oxidase accumulation in the body wall cuticle, no pro-phenol oxidase mRNA could be detected in the epidermal tissue, whereas free-circulating hemocytes contained numerous transcripts of pro-phenol oxidase. Our results suggest that the pro-phenol oxidase is synthesized in the hemocytes and actively transported into the cuticle via the epidermis.
Resumo:
The coffee berry borer, Hypothenemus hampei, is the most important insect pest of coffee worldwide and has an unusual life history that ensures a high degree of inbreeding. Individual females lay a predominantly female brood within individual coffee berries and because males are flightless there is almost entirely full sib mating. We investigated the genetics associated with this interesting life history after the important discovery of resistance to the cyclodiene type insecticide endosulfan. Both the inheritance of the resistance phenotype and the resistance-associated point mutation in the gamma-aminobutyric acid receptor gene Rdl were examined. Consistent with haplodiploidy, males failed to express and transmit paternally derived resistance alleles. Furthermore, while cytological examination revealed that males are diploid, one set of chromosomes was condensed, and probably nonfunctional, in the somatic cells of all males examined. Moreover, although two sets of chromosomes were present in primary spermatocytes, the chromosomes failed to pair before the single meiotic division, and only one set was packaged in sperm. Thus, the coffee berry borer is "functionally" haplodiploid. Its genetics and life history may therefore represent an interesting intermediate step in the evolution of true haplodiploidy. The influence of this breeding system on the spread of insecticide resistance is discussed.
Resumo:
We describe a nonpeptide mimetic analog of an invertebrate peptide receptor. Benzethonium chloride (Bztc) is an agonist of the SchistoFLRFamide (PDVDHVFLRFamide) receptors found on locust oviducts. Bztc competitively displaces [125I-labeled Y1]SchistoFLRFamide binding to both high- and low-affinity receptors of membrane preparations. Bztc mimics the physiological effects of SchistoFLRFamide on locust oviduct, by inhibiting myogenic and induced contractions in a dose-dependent manner. Bztc is therefore recognized by the binding and activation regions of the SchistoFLRFamide receptors. This discovery provides a unique opportunity within insects to finally target a peptide receptor for the development of future pest management strategies.
Resumo:
Pro-phenol oxidase [pro-PO; zymogen of phenol oxidase (monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1)] is present in the hemolymph plasma of the silkworm Bombyx mori. Pro-PO is a heterodimeric protein synthesized by hemocytes. A specific serine proteinase activates both subunits through a limited proteolysis. The amino acid sequences of both subunits were deduced from their respective cDNAs; amino acid sequence homology between the subunits was 51%. The deduced amino acid sequences revealed domains highly homologous to the copper-binding site sequences (copper-binding sites A and B) of arthropod hemocyanins. The overall sequence homology between silkworm pro-PO and arthropod hemocyanins ranged from 29 to 39%. Phenol oxidases from prokaryotes, fungi, and vertebrates have sequences homologous to only the copper-binding site B of arthropod hemocyanins. Thus, silkworm pro-PO DNA described here appears distinctive and more closely related to arthropod hemocyanins. The pro-PO-activating serine proteinase was shown to hydrolyze peptide bonds at the carboxyl side of arginine in the sequence-Asn-49-Arg-50-Phe-51-Gly-52- of both subunits. Amino groups of N termini of both subunits were indicated to be N-acetylated. The cDNAs of both pro-PO subunits lacked signal peptide sequences. This result supports our contention that mature pro-PO accumulates in the cytoplasm of hemocytes and is released by cell rupture, as for arthropod hemocyanins.
Resumo:
The polyomavirus virion has an outer capsid comprised of 72 pentamers of the VP1 protein associated with the minor virion proteins, VP2 and VP3, and the viral minichromosome. To investigate the interaction between VP1 and VP2/VP3, we mapped VP1 phosphorylation sites and assayed VP1 recognition by anti-peptide antibodies after coexpression of VP1 with VP2 or VP3 by using recombinant baculovirus vectors. VP1, expressed either alone or with VP3, was phosphorylated on serine residues, which are not modified during polyomavirus infection of mouse cells. When VP1 was coexpressed with VP2, the nonphysiologic serine phosphorylation of VP1 was decreased, and a tryptic peptide containing Thr-63, a site modified during virus infection of mouse cells, was phosphorylated. An anti-peptide antibody directed against the VP1 BC loop domain containing Thr-63 recognized VP1 expressed alone but not VP1 coexpressed with VP2 or VP3. The change in phosphorylation resulting from coexpression of two structural proteins identifies the potential of the baculovirus system for studying protein-protein interactions and defines a functional role for the VP1-VP2 interaction.
Resumo:
We report that methoprene and its derivatives can stimulate gene transcription in vertebrates by acting through the retinoic acid-responsive transcription factors, the retinoid X receptors (RXRs). Methoprene is an insect growth regulator in domestic and agricultural use as a pesticide. At least one metabolite of methoprene, methoprene acid, directly binds to RXR and is a transcriptional activator in both insect and mammalian cells. Unlike the endogenous RXR ligand, 9-cis-retinoic acid, this activity is RXR-specific; the methoprene derivatives do not activate the retinoic acid receptor pathway. Methoprene is a juvenile hormone analog that acts to retain juvenile characteristics during insect growth, preventing metamorphosis into an adult, and it has been shown to have ovicidal properties in some insects. Thus, a pesticide that mimics the action of juvenile hormone in insects can also activate a mammalian retinoid-responsive pathway. This finding provides a basis through which the potential bioactivity of substances exposed to the environment may be reexamined and points the way for discovery of new receptor ligands in both insects and vertebrates.
Resumo:
Dentre os insetos que causam prejuízo a produção de soja, os percevejos fitófagos destacam-se como o principal grupo de pragas, sendo Euschistus heros (Fabricius, 1798), atualmente, a principal espécie de praga da cultura, que está distribuída em todas as regiões brasileiras de cultivo da leguminosa. Para o controle das populações destes insetos, o método mais utilizado é o controle químico. No entanto, as exigências tem sido crescentes no que diz respeito à redução do uso de agroquímicos. Dentre as alternativas, o uso dos parasitoides de ovos Telenomus podisi Ashmead, 1881 e Trissolcus basalis Wollaston, 1858 emerge com bom potencial para programas de controle biológico. O uso desses agentes de controle deve ser baseado em estudos que assegurem a eficiência dos insetos no manejo da população da praga. O presente estudo combina experimentação laboratorial e de campo com modelagem matemática para investigar o potencial dos parasitoides como controladores do percevejo da soja. Foram realizados estudos relacionados aos parâmetros biológicos e potenciais reprodutivos de T. podisi e T. basalis através de tabelas de vida de fertilidade. Foram determinadas as exigências térmicas de ambos os parasitoides de ovos e observou-se o efeito da idade dos ovos de E. heros no parasitismo por T. podisi e T. basalis. Foi também avaliada a interação entre as duas espécies de parasitóides e determinado o número ideal de cada espécie de parasitoide a ser liberado de acordo com a densidade de ovos do hospedeiro. Finalmente um modelo matemático foi proposto visando simular interações e liberações em parasitoides, para o controle de E. heros. Com a combinação entre os experimentos e a implementação de metodologia analítica através de modelagem ecológica espera-se incrementar estratégias de controle da praga, para fundamentar a recomendação do uso do parasitoide mais eficiente para controlar E. heros, ou mesmo a melhor forma de combinar o o uso das espécies de inimigos naturais.
Resumo:
Helicoverpa armigera (Hübner) was officially reported in Brazil in 2013. This species is closely related to Helicoverpa zea (Boddie) and has caused significant crop damage in Brazil. The use of genetically modified crops expressing insecticidal protein from Bacillus thuringiensis (Berliner) has been one of the control tactics for managing these pests. Genetically modified maize expressing Vip3Aa20 was approved to commercial use in Brazil in 2009. Understanding the genetic diversity and the susceptibility to B. thuringiensis proteins in H. armigera and H. zea populations in Brazil are crucial for establishing Insect Resistance Management (IRM) programs in Brazil. Therefore, the objectives of this study were: (a) to infer demographic parameters and genetic structure of H. armigera and H. zea Brazil; (b) to assess the intra and interspecific gene flow and genetic diversity of H. armigera and H. zea; and (c) to evaluate the susceptibility to Vip3Aa20 protein in H. armigera and H. zea populations of Brazil. A phylogeographic analysis of field H. armigera and H. zea populations was performed using a partial sequence data from the cytochrome c oxidase I (COI) gene. H. armigera individuals were most prevalent on dicotyledonous hosts and H. zea individuals were most prevalent on maize crops. Both species showed signs of demographic expansion and no genetic structure. High genetic diversity and wide distribution were observed for H. armigera. A joint analysis indicated the presence of Chinese, Indian, and European lineages within the Brazilian populations of H. armigera. In the cross-species amplification study, seven microsatellite loci were amplified; and showed a potential hybrid offspring in natural conditions. Interespecific analyses using the same microsatellite loci with Brazilian H. armigera and H. zea in compare to the USA H. zea were also conducted. When analyses were performed within each species, 10 microsatellites were used for H. armigera, and eight for H. zea. We detected high intraspecific gene flow in populations of H. armigera and H. zea from Brazil and H. zea from the USA. Genetic diversity was similar for both species. However, H. armigera was more similar to H. zea from Brazil than H. zea from the USA and some putative hybrid individuals were found in Brazilian populations.Tthere was low gene flow between Brazilian and USA H. zea. The baseline susceptibility to Vip3Aa20 resulted in low interpopulation variation for H. zea (3-fold) and for H. armigera (5-fold), based on LC50. H. armigera was more tolerant to Vip3Aa20 than H. zea (≈ 40 to 75-fold, based on CL50). The diagnostic concentration for susceptibility monitoring, based on CL99, was fairly high (6,400 ng Vip3Aa20/cm2) for H. zea and not validated for H. armigera due to the high amount of protein needed for bioassays. Implementing IRM strategies to Vip3Aa20 in H. armigera and H. zea will be of a great challenge in Brazil, mainly due to the low susceptibility to Vip3Aa20 and high genetic diversity and gene flow in both species, besides a potential of hybrid individuals between H. armigera and H. zea under field conditions.
Resumo:
A major problem related to the treatment of ecosystems is that they have no available mathematical formalization. This implies that many of their properties are not presented as short, rigorous modalities, but rather as long expressions which, from a biological standpoint, totally capture the significance of the property, but which have the disadvantage of not being sufficiently manageable, from a mathematical standpoint. The interpretation of ecosystems through networks allows us to employ the concepts of coverage and invariance alongside other related concepts. The latter will allow us to present the two most important relations in an ecosystem – predator–prey and competition – in a different way. Biological control, defined as “the use of living organisms, their resources or their products to prevent or reduce loss or damage caused by pests”, is now considered the environmentally safest and most economically advantageous method of pest control (van Lenteren, 2011). A guild includes all those organisms that share a common food resource (Polis et al., 1989), which in the context of biological control means all the natural enemies of a given pest. There are several types of intraguild interactions, but the one that has received most research attention is intraguild predation, which occurs when two organisms share the same prey while at the same time participating in some kind of trophic interaction. However, this is not the only intraguild relationship possible, and studies are now being conducted on others, such as oviposition deterrence. In this article, we apply the developed concepts of structural functions, coverage, invariant sets, etc. (Lloret et al., 1998, Esteve and Lloret, 2006a, Esteve and Lloret, 2006b and Esteve and Lloret, 2007) to a tritrophic system that includes aphids, one of the most damaging pests and a current bottleneck for the success of biological control in Mediterranean greenhouses.
Resumo:
Saproxylic diversity assessment is a major goal for conservation strategies in woodlands and it should consider woodland composition and configuration at site and tree level as key modelling factors. However, in Mediterranean woodlands little is known about the relation with the environmental factors that structure their assemblages, especially those linked to tree hollow microhabitats. We assessed the diversity of Syrphidae (Diptera) and Coleoptera saproxylic guilds that co-occurred in tree hollows located in three different Iberian Mediterranean woodlands in the Cabañeros National Park (Spain). Furthermore, we evaluated how differences in tree hollow microenvironmental variables (understood as the physical and biotic characteristics of a hollow and tree individual) influenced saproxylic guild diversity both within and among woodland sites. We found that woodland sites that provided greater heterogeneity of trees and hollow microhabitats determined higher saproxylic guild diversity. Nevertheless, certain species or even complete guilds can be favoured in woodlands where some hollow microhabitats predominate as a consequence of historical tree management. In general, hollow volume was the main determining factor for saproxylic guild richness and abundance in woodland sites, and large hollow volume was usually related to higher diversity, which highlighted the importance of multi-habitat hollow trees. Moreover, saproxylic guilds also responded to other different microenvironmental variables, which indicated different ecological preferences among guilds. The conservation of saproxylic insects in Iberian Mediterranean areas must be addressed to protect woodland sites that provide high diversity and large numbers of tree hollow microhabitats, and practices to enhance microhabitat heterogeneity should even be encouraged.
Resumo:
The assessment of the relationship between species diversity, species interactions and environmental characteristics is indispensable for understanding network architecture and ecological distribution in complex networks. Saproxylic insect communities inhabiting tree hollow microhabitats within Mediterranean woodlands are highly dependent on woodland configuration and on microhabitat supply they harbor, so can be studied under the network analysis perspective. We assessed the differences in interacting patterns according to woodland site, and analysed the importance of functional species in modelling network architecture. We then evaluated their implications for saproxylic assemblages’ persistence, through simulations of three possible scenarios of loss of tree hollow microhabitat. Tree hollow-saproxylic insect networks per woodland site presented a significant nested pattern. Those woodlands with higher complexity of tree individuals and tree hollow microhabitats also housed higher species/interactions diversity and complexity of saproxylic networks, and exhibited a higher degree of nestedness, suggesting that a higher woodland complexity positively influences saproxylic diversity and interaction complexity, thus determining higher degree of nestedness. Moreover, the number of insects acting as key interconnectors (nodes falling into the core region, using core/periphery tests) was similar among woodland sites, but the species identity varied on each. Such differences in insect core composition among woodland sites suggest the functional role they depict at woodland scale. Tree hollows acting as core corresponded with large tree hollows near the ground and simultaneously housing various breeding microsites, whereas core insects were species mediating relevant ecological interactions within saproxylic communities, e.g. predation, competitive or facilitation interactions. Differences in network patterns and tree hollow characteristics among woodland sites clearly defined different sensitivity to microhabitat loss, and higher saproxylic diversity and woodland complexity showed positive relation with robustness. These results highlight that woodland complexity goes hand in hand with biotic and ecological complexity of saproxylic networks, and together exhibited positive effects on network robustness.
Resumo:
Bibliography.
Resumo:
Caption title.