971 resultados para inferior member


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously identified a cellular protein kinase activity termed TAK that specifically associates with the HIV types 1 and 2 Tat proteins. TAK hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II in vitro in a manner believed to activate transcription [Herrmann, C. H. & Rice, A. P. (1995) J. Virol. 69, 1612–1620]. We show here that the catalytic subunit of TAK is a known human kinase previously named PITALRE, which is a member of the cyclin-dependent family of proteins. We also show that TAK activity is elevated upon activation of peripheral blood mononuclear cells and peripheral blood lymphocytes and upon differentiation of U1 and U937 promonocytic cell lines to macrophages. Therefore, in HIV-infected individuals TAK may be induced in T cells following activation and in macrophages following differentiation, thus contributing to high levels of viral transcription and the escape from latency of transcriptionally silent proviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p53 tumor suppressor protein negatively regulates cell growth, mainly through the transactivation of its downstream target genes. As a sequence-specific DNA binding transcription factor, p53 specifically binds to a 20-bp consensus motif 5′-PuPuPuC(A/T) (T/A)GPyPyPyPuPuPuC(A/T)(T/A)GPyPyPy-3′. We have now identified, partially purified, and characterized an additional ≈40-kDa nuclear protein, p53CP (p53 competing protein), that specifically binds to the consensus p53 binding sites found in several p53 downstream target genes, including Waf-1, Gadd45, Mdm2, Bax, and RGC. The minimal sequence requirement for binding is a 14-bp motif, 5′-CTTGCTTGAACAGG-3′ [5′-C(A/T)(T/A)GPyPyPyPuPuPuC(A/T)(T/A)G-3′], which includes the central nucleotides of the typical p53 binding site with one mismatch. p53CP and p53 (complexed with antibody) showed a similar binding specificity to Waf-1 site but differences in Gadd45 and T3SF binding. Like p53, p53CP also binds both double- and single-stranded DNA oligonucleotides. Important to note, cell cycle blockers and DNA damaging reagents, which induce p53 binding activity, were found to inhibit p53CP binding in p53-positive, but not in p53-negative, cells. This finding suggested a p53-dependent coordinate regulation of p53 and p53CP in response to external stimuli. p53CP therefore could be a third member of the p53 family, in addition to p53 and p73, a newly identified p53 homolog. p53CP, if sequestering p53 from its DNA binding sites through competitive binding, may provide a novel mechanism of p53 inactivation. Alternatively, p53CP may have p53-like functions by binding and transactivating p53 downstream target genes. Cloning of the p53CP gene ultimately will resolve this issue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of neuroimaging findings have been interpreted as evidence that the left inferior frontal gyrus (IFG) subserves retrieval of semantic knowledge. We provide a fundamentally different interpretation, that it is not retrieval of semantic knowledge per se that is associated with left IFG activity but rather selection of information among competing alternatives from semantic memory. Selection demands were varied across three semantic tasks in a single group of subjects. Functional magnetic resonance imaging signal in overlapping regions of left IFG was dependent on selection demands in all three tasks. In addition, the degree of semantic processing was varied independently of selection demands in one of the tasks. The absence of left IFG activity for this comparison counters the argument that the effects of selection can be attributed solely to variations in degree of semantic retrieval. Our findings suggest that it is selection, not retrieval, of semantic knowledge that drives activity in the left IFG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a PCR approach we have isolated racF1, a novel member of the Rho family in Dictyostelium. The racF1 gene encodes a protein of 193 amino acids and is constitutively expressed throughout the Dictyostelium life cycle. Highest identity (94%) was found to a RacF2 isoform, to Dictyostelium Rac1A, Rac1B, and Rac1C (70%), and to Rac proteins of animal species (64–69%). To investigate the role of RacF1 in cytoskeleton-dependent processes, we have fused it at its amino-terminus with green fluorescent protein (GFP) and studied the dynamics of subcellular redistribution using a confocal laser scanning microscope and a double-view microscope system. GFP–RacF1 was homogeneously distributed in the cytosol and accumulated at the plasma membrane, especially at regions of transient intercellular contacts. GFP–RacF1 also localized transiently to macropinosomes and phagocytic cups and was gradually released within <1 min after formation of the endocytic vesicle or the phagosome, respectively. On stimulation with cAMP, no enrichment of GFP–RacF1 was observed in leading fronts, from which it was found to be initially excluded. Cell lines were obtained using homologous recombination that expressed a truncated racF1 gene lacking sequences encoding the carboxyl-terminal region responsible for membrane targeting. These cells displayed normal phagocytosis, endocytosis, and exocytosis rates. Our results suggest that RacF1 associates with dynamic structures that are formed during pinocytosis and phagocytosis. Although RacF1 appears not to be essential, it might act in concert and/or share functions with other members of the Rho family in the regulation of a subset of cytoskeletal rearrangements that are required for these processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have cloned the UNI3 gene in Chlamydomonas and find that it encodes a new member of the tubulin superfamily. Although Uni3p shares significant sequence identity with α-, β-, and γ-tubulins, there is a region of Uni3p that has no similarity to tubulins or other known proteins. Mutant uni3–1 cells assemble zero, one, or two flagella. Pedigree analysis suggests that flagellar number in uni3–1 cells is a function of the age of the cell. The uniflagellate uni3–1 cells show a positional phenotype; the basal body opposite the eyespot templates the single flagellum. A percentage of uni3–1 cells also fail to orient the cleavage furrow properly, and basal bodies have been implicated in the placement of cleavage furrows in Chlamydomonas. Finally when uni3–1 cells are observed by electron microscopy, doublet rather than triplet microtubules are observed at the proximal end of the basal bodies. We propose that the Uni3 tubulin is involved in both the function and cell cycle-dependent maturation of basal bodies/centrioles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although extensively studied biochemically, members of the Protein 4.1 superfamily have not been as well characterized genetically. Studies of coracle, a Drosophila Protein 4.1 homologue, provide an opportunity to examine the genetic functions of this gene family. coracle was originally identified as a dominant suppressor of EgfrElp, a hypermorphic form of the Drosophila Epidermal growth factor receptor gene. In this article, we present a phenotypic analysis of coracle, one of the first for a member of the Protein 4.1 superfamily. Screens for new coracle alleles confirm the null coracle phenotype of embryonic lethality and failure in dorsal closure, and they identify additional defects in the embryonic epidermis and salivary glands. Hypomorphic coracle alleles reveal functions in many imaginal tissues. Analysis of coracle mutant cells indicates that Coracle is a necessary structural component of the septate junction required for the maintenance of the transepithelial barrier but is not necessary for apical–basal polarity, epithelial integrity, or cytoskeletal integrity. In addition, coracle phenotypes suggest a specific role in cell signaling events. Finally, complementation analysis provides information regarding the functional organization of Coracle and possibly other Protein 4.1 superfamily members. These studies provide insights into a range of in vivo functions for coracle in developing embryos and adults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trithorax gene family contains members implicated in the control of transcription, development, chromosome structure, and human leukemia. A feature shared by some family members, and by other proteins that function in chromatin-mediated transcriptional regulation, is the presence of a 130- to 140-amino acid motif dubbed the SET or Tromo domain. Here we present analysis of SET1, a yeast member of the trithorax gene family that was identified by sequence inspection to encode a 1080-amino acid protein with a C-terminal SET domain. In addition to its SET domain, which is 40–50% identical to those previously characterized, SET1 also shares dispersed but significant similarity to Drosophila and human trithorax homologues. To understand SET1 function(s), we created a null mutant. Mutant strains, although viable, are defective in transcriptional silencing of the silent mating-type loci and telomeres. The telomeric silencing defect is rescued not only by full-length episomal SET1 but also by the conserved SET domain of SET1. set1 mutant strains display other phenotypes including morphological abnormalities, stationary phase defects, and growth and sporulation defects. Candidate genes that may interact with SET1 include those with functions in transcription, growth, and cell cycle control. These data suggest that yeast SET1, like its SET domain counterparts in other organisms, functions in diverse biological processes including transcription and chromatin structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Krüppel-associated box A (KRAB-A) domain is an evolutionarily conserved transcriptional repressor domain present in approximately one-third of zinc finger proteins of the Cys2-His2 type. Using the yeast two-hybrid system, we report the isolation of a cDNA encoding a novel murine protein, KRAB-A interacting protein 1 (KRIP-1) that physically interacts with the KRAB-A region. KRIP-1 is a member of the RBCC subfamily of the RING finger, or Cys3HisCys4, family of zinc binding proteins whose other members are known to play important roles in differentiation, oncogenesis, and signal transduction. The KRIP-1 protein has high homology to TIF1, a putative modulator of ligand-dependent activation function of nuclear receptors. A 3.5-kb mRNA for KRIP-1 is ubiquitously expressed among all adult mouse tissues studied. When a GAL4–KRIP-1 fusion protein is expressed in COS cells with a chloramphenicol acetyltransferase reporter construct with five GAL4 binding sites, there is dose-dependent repression of transcription. Thus, KRIP-1 interacts with the KRAB-A region of C2H2 zinc finger proteins and may mediate or modulate KRAB-A transcriptional repressor activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification and characterization of p53 target genes would lead to a better understanding of p53 functions and p53-mediated signaling pathways. Two putative p53 binding sites were identified in the promoter of a gene encoding PTGF-β, a type β transforming growth factor (TGF-β) superfamily member. Gel shift assay showed that p53 bound to both sites. Luciferase-coupled transactivation assay revealed that the gene promoter was activated in a p53 dose- as well as p53 binding site-dependent manner by wild-type p53 but not by several p53 mutants. The p53 binding and transactivation of the PTGF-β promoter was enhanced by etoposide, a p53 activator, and was largely blocked by a dominant negative p53 mutant. Furthermore, expression of endogenous PTGF-β was remarkably induced by etoposide in p53-positive, but not in p53-negative, cell lines. Finally, the conditioned medium collected from PTGF-β-overexpressing cells, but not from the control cells, suppressed tumor cell growth. Growth suppression was not, however, seen in cells that lack functional TGF-β receptors or Smad4, suggesting that PTGF-β acts through the TGF-β signaling pathway. Thus, PTGF-β, a secretory protein, is a p53 target that could mediate p53-induced growth suppression in autocrinal as well as paracrinal fashions. The finding made a vertical connection between p53 and TGF-β signaling pathways in controlling cell growth and implied a potential important role of p53 in inflammation regulation via PTGF-β.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The semaphorins comprise a large family of membrane-bound and secreted proteins, some of which have been shown to function in axon guidance. We have cloned a transmembrane semaphorin, Sema W, that belongs to the class IV subgroup of the semaphorin family. The mouse and rat forms of Sema W show 97% amino acid sequence identity with each other, and each shows about 91% identity with the human form. The gene for Sema W is divided into 15 exons, up to 4 of which are absent in the human cDNAs that we sequenced. Unlike many other semaphorins, Sema W is expressed at low levels in the developing embryo but was found to be expressed at high levels in the adult central nervous system and lung. Functional studies with purified membrane fractions from COS7 cells transfected with a Sema W expression plasmid showed that Sema W has growth-cone collapse activity against retinal ganglion-cell axons, indicating that vertebrate transmembrane semaphorins, like secreted semaphorins, can collapse growth cones. Genetic mapping of human SEMAW with human/hamster radiation hybrids localized the gene to chromosome 2p13. Genetic mapping of mouse Semaw with mouse/hamster radiation hybrids localized the gene to chromosome 6, and physical mapping placed the gene on bacteria artificial chromosomes carrying microsatellite markers D6Mit70 and D6Mit189. This localization places Semaw within the locus for motor neuron degeneration 2, making it an attractive candidate gene for this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyaluronan (HA), a large glycosaminoglycan abundant in the extracellular matrix, is important in cell migration during embryonic development, cellular proliferation, and differentiation and has a structural role in connective tissues. The turnover of HA requires endoglycosidic breakdown by lysosomal hyaluronidase, and a congenital deficiency of hyaluronidase has been thought to be incompatible with life. However, a patient with a deficiency of serum hyaluronidase, now designated as mucopolysaccharidosis IX, was recently described. This patient had a surprisingly mild clinical phenotype, including notable periarticular soft tissue masses, mild short stature, an absence of neurological or visceral involvement, and histological and ultrastructural evidence of a lysosomal storage disease. To determine the molecular basis of mucopolysaccharidosis IX, we analyzed two candidate genes tandemly distributed on human chromosome 3p21.3 and encoding proteins with homology to a sperm protein with hyaluronidase activity. These genes, HYAL1 and HYAL2, encode two distinct lysosomal hyaluronidases with different substrate specificities. We identified two mutations in the HYAL1 alleles of the patient, a 1412G → A mutation that introduces a nonconservative amino acid substitution (Glu268Lys) in a putative active site residue and a complex intragenic rearrangement, 1361del37ins14, that results in a premature termination codon. We further show that these two hyaluronidase genes, as well as a third recently discovered adjacent hyaluronidase gene, HYAL3, have markedly different tissue expression patterns, consistent with differing roles in HA metabolism. These data provide an explanation for the unexpectedly mild phenotype in mucopolysaccharidosis IX and predict the existence of other hyaluronidase deficiency disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor necrosis factor-related, activation-induced cytokine (TRANCE), a tumor necrosis factor family member, mediates survival of dendritic cells in the immune system and is required for osteoclast differentiation and activation in the skeleton. We report the skeletal phenotype of TRANCE-deficient mice and its rescue by the TRANCE transgene specifically expressed in lymphocytes. TRANCE-deficient mice showed severe osteopetrosis, with no osteoclasts, marrow spaces, or tooth eruption, and exhibited profound growth retardation at several skeletal sites, including the limbs, skull, and vertebrae. These mice had marked chondrodysplasia, with thick, irregular growth plates and a relative increase in hypertrophic chondrocytes. Transgenic overexpression of TRANCE in lymphocytes of TRANCE-deficient mice rescued osteoclast development in two locations in growing long bones: excavation of marrow cavities permitting hematopoiesis in the marrow spaces, and remodeling of osteopetrotic woven bone in the shafts of long bones into histologically normal lamellar bone. However, osteoclasts in these mice failed to appear at the chondroosseous junction and the metaphyseal periosteum of long bones, nor were they present in tooth eruption pathways. These defects resulted in sclerotic metaphyses with persistence of club-shaped long bones and unerupted teeth, and the growth plate defects were largely unimproved by the TRANCE transgene. Thus, TRANCE-mediated regulation of the skeleton is complex, and impacts chondrocyte differentiation and osteoclast formation in a manner that likely requires local delivery of TRANCE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large conductance voltage- and Ca2+-dependent K+ (MaxiK) channels show sequence similarities to voltage-gated ion channels. They have a homologous S1-S6 region, but are unique at the N and C termini. At the C terminus, MaxiK channels have four additional hydrophobic regions (S7-S10) of unknown topology. At the N terminus, we have recently proposed a new model where MaxiK channels have an additional transmembrane region (S0) that confers β subunit regulation. Using transient expression of epitope tagged MaxiK channels, in vitro translation, functional, and “in vivo” reconstitution assays, we now show that MaxiK channels have seven transmembrane segments (S0-S6) at the N terminus and a S1-S6 region that folds in a similar way as in voltage-gated ion channels. Further, our results indicate that hydrophobic segments S9-S10 in the C terminus are cytoplasmic and unequivocally demonstrate that S0 forms an additional transmembrane segment leading to an exoplasmic N terminus.