995 resultados para industrial enzymes
Resumo:
The aim of the present investigation was to evaluate the enzymatic activity of polyphenoloxidase and peroxidase in avocado pulps, from the Northwest area of Paraná-Brazil, in order to compare the varieties on their enzymatic activity for both, minimum and industrial processing. Enzymatic extracts were prepared from avocado pulp of Choquete, Fortuna and Quintal varieties, in green and ripe maturation stage. Thermal treatment was applied with temperatures 60, 65, 70, 75 and 80 °C. The enzymatic activities were determined by using spectrophotometer. A decline of polyphenoloxidase activity was observed in all of the varieties when both, temperature and time increased. Total inactivation of enzymes was not observed in the largest temperature. Fortuna and Choquete variety showed the lowest polyphenoloxidase activity in the ripe stage. Soluble peroxidase showed activity in the green stage, whereas, ionically bound peroxidase activity increased with the change from green to ripe maturation stage in Choquete variety.
Resumo:
This work reports the use of experimental design for the assessment of the effects of process parameters on the production of fish nuggets in an industrial scale environment. The effect of independent factors on the physicochemical and microbiological parameters was investigated through a full 24 experimental design. The studied factors included the temperature of fish fillet and pulp in the mixer, the temperature of the added fat, the temperature of water and the ratio of protein extraction time to emulsion time. The physicochemical analyses showed that the higher temperature of the pulp and fillet of fish, the lower the protein in the final product. Microbiological analyses revealed that the counting of Staphylococcus coagulase positive, total and thermo-tolerant coliforms were in accordance with the current legislation.
Resumo:
Cajá-manga, also known as golden apple and hog-plum, is an exotic fruit native from Îles de la Société (French Polynesia), which was first introduced in Brazil in 1985. The pulp of ripe fruit was treated with the commercial enzymatic pool and its effect was evaluated in terms of yield, as well as the physical properties viscosity, turbidity and color (L* values). Response surface methodology was used and three levels were adopted for the independent variables temperature (30, 40, and 50 ºC), incubation time (30, 60 and 90 minutes) and enzyme concentration (0.01, 0.05, 0.09 v/v%). A central composite statistical design was used to guide the experimental work. The enzyme treatment highly increased both juice yield (up to 56%) and color (up to 8.6%) and strongly decreased viscosity (up to 57.4%), clarity (up to 77%) and turbidity (up to 85.5%). Incubation time was the most interacting facto, whereas temperature was the least one. Optimization analysis was carried out to reduce enzyme concentration to a minimum by superposing the contour plots of the tested properties, and the recommended ranges of the variables enzyme concentration, process temperature and incubation time were, respectively, 0.042-0.068%, 47.0-49.0 ºC and 82-90 minutes.
Resumo:
The aim of this work was to evaluate spices and industrial ingredients for the development of functional foods with high phenolic contents and antioxidant capacity. Basil, bay, chives, onion, oregano, parsley, rosemary, turmeric and powdered industrial ingredients (β-carotene, green tea extract, lutein, lycopene and olive extract) had their in vitro antioxidant capacity evaluated by means of the Folin-Ciocalteu reducing capacity and DPPH scavenging ability. Flavonoids identification and quantification were performed by High Performance Liquid Chromatography (HPLC). The results showed that spices presented a large variation in flavonoids content and in vitro antioxidant capacity, according to kind, brand and batches. Oregano had the highest antioxidant capacity and parsley had the highest flavonoid content. The industrial ingredient with the highest antioxidant capacity was green tea extract, which presented a high content of epigalocatechin gallate. Olive extract also showed a high antioxidant activity and it was a good source of chlorogenic acid. This study suggests that oregano, parsley, olive and green tea extract have an excellent potential for the development of functional foods rich in flavonoids as antioxidant, as long as the variability between batches/brands is controlled.
Resumo:
This study was carried out to evaluate the antioxidant capacity of the agro-industrial waste from acerola. Hydroacetone, hydroethanolic, and hydromethanolic extracts were obtained using the sequential extraction process, and they were screened for their free radical DPPH (1,1-diphenyl-2-picrilhidrazil) and ABTS+ (2,2'-azino-bis-(3-etilbenzotiazolin 6-sulfonic acid) scavenging activity and their effect on the linoleic acid peroxidation by the ferric thiocyanate method. Soybean oil with the addition of the extracts (200 ppm) was submitted to Schaal oven test (60 °C, 28 days), in which the samples were analyzed for peroxide value and conjugated dienes. Hydroethanolic and hydromethanolic extracts exhibited good DPPH scavenging activity (low value of EC50 and TEC50 and high value of AE), good ABTS scavenging capacity (1445.1 and 1145.5 µMol TEAC.g-1, respectively), and high percentage inhibition of peroxidation of linoleic acid (96.12 and 91.84%, respectively) and showed the ability to retard the formation of peroxides and conjugated dienes.
Resumo:
Protease and α-amylase production by a thermophilic Bacillus sp. SMIA-2 cultivated in liquid cultures containing 0.25% (w/v) starch as a carbon source reached a maximum at 18 hours (47 U.mg-1 Protein) and 36 hours (325 U.mg-1 Protein), respectively. Culture medium supplementation with whey protein concentrate (0.1%, w/v) and corn steep liquor (0.3%, w/v) not only improved the production of both enzymes but also enabled them to be produced simultaneously. Under these conditions, α-amylase and protease production reached a maximum in 18 hours with levels of 401 U.mg-1 protein and 78 U.mg-1 protein, respectively. The compatibility of the enzymes produced with commercial laundry detergent was investigated. In the presence of Campeiro® detergent, α-amylase activity increased while protease activity decreased by about 27%. These enzymes improved the cleaning power of Campeiro® detergent since they were able to remove egg yolk and tomato sauce stains when used in this detergent.
Resumo:
The physiological state of a fruit is closely related to ripening and climatic conditions during the growing period when the fruit undergo changes in color, texture, and flavor. The ripening of the fruit can involve a complex series of biochemical reactions with alteration in enzymes activities, phenols, tannins, and ascorbic acid. The activity of enzymes (carboximethylcellulase, polygalacturonase, and pectinlyase), the total concentration of phenolic compounds, condensed tannins, and vitamin C in five stages of maturation were studied. Significant changes were observed between the maturity stages. The phenolic compounds were higher at green stage (705.01 ± 7.41); tannins were higher at green/purple stage (699.45 ± 0.22). The results showed that the ascorbic acid levels of the pulp varied significantly from 50.81 ± 1.43 to 6.61 ± 1.04 mg.100 g-1 during maturation. The specific activity of pectin lyase was higher at green stage (1531.90 ± 5.83). The specific activity of polygalacturonase was higher at mature stage (1.83 ± 0.0018). The specific activity of carboximetilcelulose was higher at ripe mature stage (4.61 ± 0.0024). The low ascorbic acid content found in jambolan fruit indicates that this fruit is not a rich source of this nutrient; however, other characteristics can make jambolan products fit for human consumption.
Resumo:
Microbial pectinolytic enzymes are known to play a commercially important role in a number of industrial processes. Two kinds of yeast can be discerned regarding the production of enzymes. One group includes those which can produce enzymes in the absence of an inducer, and the other group comprises the yeasts that produce enzymes in the presence of an inducer. The objective of this study was to investigate the influence of pectic substances, glucose, pH, and temperature on the polygalacturonase activity by Kluyveromyces marxianus CCMB 322. The yeast was grown in a fermentation broth containing different concentrations of glucose and pectic substances. The polygalacturonase activity was determined by the DNS method, and the pH and temperature were optimized using a central composite experimental design. The polygalacturonase secreted by K. marxianus CCMB 322 was partially constitutive showing optimum pH and temperature of 7.36 and 70 °C, respectively, and maintained approximately 93% of its original activity for 50 minutes at 50 °C. Thermal stability of the polygalacturonase enzyme was studied at different temperatures (50, 60, 70, and 80 °C) and different incubation times (0, 10, 20, 30, 40, and 50 minutes). This study showed that glucose can influence the regulation of the synthesis of polygalacturonase.
Resumo:
There is a trend towards the use of novel technologies nowadays, mainly focused on biological processes, for recycling and the efficient utilization of organic residues that can be metabolized by different microorganisms as a source of energy. In the present study the isolation of bacterial strains from six different agro-industrial by-products and waste was performed with the objective of evaluating their hydrolytic capacities and suitability for use in bioconversion of specific substrates. The 34 isolated strains were screened in specific culture media for the production of various hydrolytic enzymes (lipase, protease, cellulase, and amylase). It was found that 28 strains exhibited proteolytic activity, 18 had lipolytic activity, 13 had caseinolytic activity, 15 had amylolytic activity, and 11 strains exhibited cellulolytic activity. The strains that showed the highest hydrolytic capacities with biotechnological potential were selected, characterized genotipically, and identified as Bacillus, Serratia, Enterococcus, Klebsiella, Stenotrophomonas, Lactococcus, and Escherichia genera. It was concluded that the strain isolates have a high potential for use in the bioconversion of agro-industrial waste, both as a pure culture and as a microbial consortium.
Resumo:
Orange seeds are a promising agroindustry-waste which can be implemented in the extraction and production of vegetable oil. The relationship between moisture content and water activity provides useful information for the processing and storage of this waste item. The aim of this study was to determine the mechanism of water sorption enthalpy-entropy of orange seeds (C. sinensis cv. Brazilians) according to the moisture content. Therefore, desorption isotherms were determined at five different temperature (30, 40, 50, 60, and 70 ºC) under a wide range of moisture content (0.005-0.057 kg kg-1 d.b.) and water activity (0.02-0.756). Theoretical and empirical models were used for modeling the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to compute the isosteric heat of sorption, the differential entropy, and Gibbs free energy using the Oswin model when the effect of temperature on the hygroscopic equilibrium was considered.
Resumo:
The physical and chemical alterations in palm oil during continuous industrial par frying of breaded chicken snacks were evaluated using a pseudo first-order kinetic model. The acidity index, refractive index, concentration of polar compounds, viscosity, color, and absorbance (232 and 268 nm) of 238 samples of the frying oil collected during 26 days of production were analyzed. For all of the analyses, the results of the oil were below the limits recommended for oil disposal, indicating that the processing conditions were safe and that under these experimental conditions the oil remained suitable for frying. The linear regressions were significant for refractive index, content of polar compounds, and lightness (L*). The content of polar compounds was determined using a cooking oil tester, and it had the best fit to the proposed model and can be used as an effective index for monitoring palm oil during the continuous par frying of breaded chicken snacks. The high turnover rate of the oil was important for maintaining the oil in good running conditions.
Resumo:
This study uses the Life Cycle Assessment (LCA) methodology to evaluate and compare the environmental impacts caused by both the artisanal and the industrial manufacturing processes of "Minas cheese". This is a traditional cheese produced in the state of Minas Gerais (Brazil), and it is considered a "cultural patrimony" in the country. The high participation of artisanal producers in the market justifies this research, and this analysis can help the identification of opportunities to improve the environmental performance of several stages of the production system. The environmental impacts caused were also assessed and compared. The functional unit adopted was 1 kilogram (Kg) of cheese. The system boundaries considered were the production process, conservation of product (before sale), and transport to consumer market. The milk production process was considered similar in both cases, and therefore it was not included in the assessment. The data were collected through interviews with the producers, observation, and a literature review; they were ordered and processed using the SimaPro 7 LCA software. According to the impact categories analyzed, the artisanal production exerted lower environmental impacts. This can be justified mainly because the industrial process includes the pasteurization stage, which uses dry wood as an energy source and refrigeration.