990 resultados para indirizzo :: 790 :: Curriculum D: Fisica della terra


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo lavoro di dottorato sono stati analizzati differenti strumenti impiegati per le stime di pericolosità sismica. Facendo riferimento alla Mappa di Pericolosità Sismica Italiana MPS04 (Gruppo di Lavoro MPS, 2004), redatta dall’Istituto Nazionale di Geofisica e Vulcanologia (INGV) e adottata come mappa di riferimento per il territorio nazionale ai sensi dell’Ordinanza PCM 3519 del 28 aprile 2006, All. 1b, è stato approfondito il calcolo dei tassi di sismicità attraverso la relazione di Gutenberg e Richter (1944). In particolare, si è proceduto attraverso un confronto tra i valori ottenuti dagli autori della Mappa (Gruppo di Lavoro MPS, 2004) e i valori ottenuti imponendo un valore costante e unico al parametro b della relazione (Gutenberg e Richter, 1944). Il secondo tema affrontato è stato l’analisi della presenza di eventi di origine non tettonica in un catalogo. Nel 2000 Wiemer e Baer hanno proposto un algoritmo che identifica e rimuove gli eventi di origine antropica. Alla metodologia di Wiemer e Baer (2000) sono state apportate delle modifiche al fine di limitare la rimozione di eventi naturali. Tale analisi è stata condotta sul Catalogo Strumentale della Sismicità Italiana (CSI 1.1; Castello et al., 2006) e sui cataloghi Europei disponibili online: Spagna e Portogallo, Francia, Nord Europa, Repubblica Ceca, Romania, Grecia. L’ultimo argomento trattato ha riguardato la presunta correlazione tra i meccanismi di fagliazione e il parametro b della relazione di Gutenberg e Richter (1944). Nel lavoro di Schorlemmer et al. (2005), tale correlazione è dimostrata calcolando il b-value su una griglia a scala mondiale raggruppando i terremoti in funzione dell’angolo di rake: i valori maggiori del parametro sono misurati per i terremoti che si originano in un regime distensivo, seguono quelli in un regime trascorrente mentre i valori minori si registrano nelle aree a regime compressivo. Il principale ostacolo per una applicazione del metodo al territorio italiano è rappresentato dal numero ridotto di terremoti per i quali è possibile avere indicazioni circa il meccanismo focale della sorgente: la correlazione è stata così valutata calcolando il b-value all’interno delle zone sismogenetiche definite per la realizzazione di MPS04 (Gruppo di Lavoro MPS, 2004), alle quali è stato nuovamente assegnato un meccanismo di fagliazione prevalente attraverso la somma del tensore momento. Sono inoltre allegati lavori altri lavori prodotti nell’ambito della pericolosità sismica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complete stratigraphic assessment and revision of the middle Campanian to upper Maastrichtian Wapiti Formation in north-western Alberta and north-eastern British Columbia is the main aim of this research project. The study area encompasses an area of approximately 200X180 km in the Grande Prairie County (west-central Alberta) and easternmost British Columbia, Canada. Results presented here indicate that the 1300m thick succession currently reported in the literature as “undifferentiated lithostratigraphic unit”, consists of five lithostratigraphic units and four unconformity-bounded depositional sequences; their study and description have been documented integrating several geological disciplines, including sequence stratigraphic methods, well-log signatures, facies analysis, and fossil associations. On the whole, particular attention has been given to 1) age and nature of both basal and upper contacts of the Wapiti Formation, 2) effective mappability of lithostratigraphic units and depositional sequences in western Alberta, and 3) the identification of previously undetermined maximum flooding surface of the Bearpaw seaway and Drumheller Marine Tongue, which are reference marine unit in central and southern Alberta. A second, but not less important, guideline for the project has been the rich paleontological record of the Wapiti deposits. Detailed paleoenvironmental and taxonomical information on old and new finds have been the base for correlation with well known associations of Alaska, southern Alberta, and Montana. Newly discovered rich fossil localities documented an extraordinarily diverse fauna during the latest Cretaceous, including dinosaurs, squamates, and fresh-water fishes and reptiles. Lastly, in order to better characterize the Wapiti Formation, major marker beds were described: these include several bentonites (altered volcanic ash deposits) which have been documented over an area of almost 30.000 km2, as well as four major coal zones, characterized by tabular coal seams with an overall thickness of 2 meters. Such marker beds represent a formidable tool for high-resolution chronology and regional correlations within the Late Cretaceous Alberta foreland basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La valutazione dell’intensità secondo una procedura formale trasparente, obiettiva e che permetta di ottenere valori numerici attraverso scelte e criteri rigorosi, rappresenta un passo ed un obiettivo per la trattazione e l’impiego delle informazioni macrosismiche. I dati macrosismici possono infatti avere importanti applicazioni per analisi sismotettoniche e per la stima della pericolosità sismica. Questa tesi ha affrontato il problema del formalismo della stima dell’intensità migliorando aspetti sia teorici che pratici attraverso tre passaggi fondamentali sviluppati in ambiente MS-Excel e Matlab: i) la raccolta e l’archiviazione del dataset macrosismico; ii), l’associazione (funzione di appartenenza o membership function) tra effetti e gradi di intensità della scala macrosismica attraverso i principi della logica dei fuzzy sets; iii) l’applicazione di algoritmi decisionali rigorosi ed obiettivi per la stima dell’intensità finale. L’intera procedura è stata applicata a sette terremoti italiani sfruttando varie possibilità, anche metodologiche, come la costruzione di funzioni di appartenenza combinando le informazioni macrosismiche di più terremoti: Monte Baldo (1876), Valle d’Illasi (1891), Marsica (1915), Santa Sofia (1918), Mugello (1919), Garfagnana (1920) e Irpinia (1930). I risultati ottenuti hanno fornito un buon accordo statistico con le intensità di un catalogo macrosismico di riferimento confermando la validità dell’intera metodologia. Le intensità ricavate sono state poi utilizzate per analisi sismotettoniche nelle aree dei terremoti studiati. I metodi di analisi statistica sui piani quotati (distribuzione geografica delle intensità assegnate) si sono rivelate in passato uno strumento potente per analisi e caratterizzazione sismotettonica, determinando i principali parametri (localizzazione epicentrale, lunghezza, larghezza, orientazione) della possibile sorgente sismogenica. Questa tesi ha implementato alcuni aspetti delle metodologie di analisi grazie a specifiche applicazioni sviluppate in Matlab che hanno permesso anche di stimare le incertezze associate ai parametri di sorgente, grazie a tecniche di ricampionamento statistico. Un’analisi sistematica per i terremoti studiati è stata portata avanti combinando i vari metodi per la stima dei parametri di sorgente con i piani quotati originali e ricalcolati attraverso le procedure decisionali fuzzy. I risultati ottenuti hanno consentito di valutare le caratteristiche delle possibili sorgenti e formulare ipotesi di natura sismotettonica che hanno avuto alcuni riscontri indiziali con dati di tipo geologico e geologico-strutturale. Alcuni eventi (1915, 1918, 1920) presentano una forte stabilità dei parametri calcolati (localizzazione epicentrale e geometria della possibile sorgente) con piccole incertezze associate. Altri eventi (1891, 1919 e 1930) hanno invece mostrato una maggiore variabilità sia nella localizzazione dell’epicentro che nella geometria delle box: per il primo evento ciò è probabilmente da mettere in relazione con la ridotta consistenza del dataset di intensità mentre per gli altri con la possibile molteplicità delle sorgenti sismogenetiche. Anche l’analisi bootstrap ha messo in evidenza, in alcuni casi, le possibili asimmetrie nelle distribuzioni di alcuni parametri (ad es. l’azimut della possibile struttura), che potrebbero suggerire meccanismi di rottura su più faglie distinte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two analytical models are proposed to describe two different mechanisms of lava tubes formation. A first model is introduced to describe the development of a solid crust in the central region of the channel, and the formation of a tube when crust widens until it reaches the leve\'es. The Newtonian assumption is considered and the steady state Navier- Stokes equation in a rectangular conduit is solved. A constant heat flux density assigned at the upper flow surface resumes the combined effects of two thermal processes: radiation and convection into the atmosphere. Advective terms are also included, by the introduction of velocity into the expression of temperature. Velocity is calculated as an average value over the channel width, so that lateral variations of temperature are neglected. As long as the upper flow surface cools, a solid layer develops, described as a plastic body, having a resistance to shear deformation. If the applied shear stress exceeds this resistance, crust breaks, otherwise, solid fragments present at the flow surface can weld together forming a continuous roof, as it happens in the sidewall flow regions. Variations of channel width, ground slope and effusion rate are analyzed, as parameters that strongly affect the shear stress values. Crust growing is favored when the channel widens, and tube formation is possible when the ground slope or the effusion rate reduce. A comparison of results is successfully made with data obtained from the analysis of pictures of actual flows. The second model describes the formation of a stable, well defined crust along both channel sides, their growing towards the center and their welding to form the tube roof. The fluid motion is described as in the model above. Thermal budget takes into account conduction into the atmosphere, and advection is included considering the velocity depending both on depth and channel width. The solidified crust has a non uniform thickness along the channel width. Stresses acting on the crust are calculated using the equations of the elastic thin plate, pinned at its ends. The model allows to calculate the distance where crust thickness is able to resist the drag of the underlying fluid and to sustain its weight by itself, and the level of the fluid can lower below the tube roof. Viscosity and thermal conductivity have been experimentally investigated through the use of a rotational viscosimeter. Analyzing samples coming from Mount Etna (2002) the following results have been obtained: the fluid is Newtonian and the thermal conductivity is constant in a range of temperature above the liquidus. For lower temperature, the fluid becomes non homogeneous, and the used experimental techniques are not able to detect any properties, because measurements are not reproducible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(U-Th)/He and fission-track analyses of apatite along deep-seated tunnels crossing high-relief mountain ranges offer the opportunity to investigate climate and tectonic forcing on the topographic evolution. In this study, the thermochronologic analysis of a large set of samples collected in the Simplon railway tunnel (western-central Alps; Italy and Switzerland) and along its surface trace, coupled with kinematic and structural analysis of major fault zones intersecting the tunnel, constrains the phenomena controlling the topographic and structural evolution, during the latest stage of exhumation of the Simplon Massif, and the timing in which they operated. The study area is located at the western margin of the Lepontine metamorphic dome where a complex nappe-stack pertaining to the Penninic and Ultrahelvetic domains experienced a fast exhumation from the latest Oligocene onward. The exhumation was mainly accommodated by a west-dipping low-angle detachment (the Simplon Fault Zone) which is located just 8 km to the west of the tunnel. However, along the section itself several faults related to two principal phases both with important dip-slip kinematics have been detected. Cooling rates derived from our thermocronological data vary from about 10 °C/Ma at about 10 Ma to about 35 °C/Ma in the last 5 Ma. Such increase in the cooling rate corresponds to the most important climatic change recorded in the northern hemisphere in the last 10 Ma, i.e. the shift to wetter conditions at the end of the Messinian salinity crisis and the inception of glacial cycles in the northern hemisphere. In addition, (U-Th)/He and fission-track age patterns lack of important correlation with the topography suggesting that the present-day relief morphology is the result of recent erosional dynamics. More in details, the (U-Th)/He tunnel ages show an impressive uniformity at 2 Ma, whereas cooling rates calculated at 1 Ma increase towards the two major valleys. This indicates a focusing of erosive processes in the valleys which led to the shaping of present-day topography. Structural analysis documents the presence of two phases of brittle deformation postdating the metamorphic phases in the area. The first one is directly related to the last phase of activity along the Simplon Fault Zone and is characterized by extension towards SO and vertical shortening. The young one is characterized by extension towards NO and horizontal shortening in a along the NE-SO direction. Structures related to the first phase of brittle deformation generate important variations in the older ages' dataset, until 3 Ma, suggesting that tectonics controlled rocks exhumation up to that age. Structures related to the second phase generate some variations also in the younger age dataset, highlighting the activity of faults bordering the massif and suggesting a continuous activity also after 2 Ma. However, most of (U-Th)/He tunnel ages, varying slightly around 2 Ma, document that the Simplon area has experienced primarily erosional exhumation in this time span. In conclusion, all our data suggest that in the central Italian Alps the climatic signal gradually overrode the tectonic effects after about 5 Ma, as a consequence of the climatic instability started at end of Messinian salinity crisis and improved by the onset of glaciations in the northern hemisphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subduction zones are the favorite places to generate tsunamigenic earthquakes, where friction between oceanic and continental plates causes the occurrence of a strong seismicity. The topics and the methodologies discussed in this thesis are focussed to the understanding of the rupture process of the seismic sources of great earthquakes that generate tsunamis. The tsunamigenesis is controlled by several kinematical characteristic of the parent earthquake, as the focal mechanism, the depth of the rupture, the slip distribution along the fault area and by the mechanical properties of the source zone. Each of these factors plays a fundamental role in the tsunami generation. Therefore, inferring the source parameters of tsunamigenic earthquakes is crucial to understand the generation of the consequent tsunami and so to mitigate the risk along the coasts. The typical way to proceed when we want to gather information regarding the source process is to have recourse to the inversion of geophysical data that are available. Tsunami data, moreover, are useful to constrain the portion of the fault area that extends offshore, generally close to the trench that, on the contrary, other kinds of data are not able to constrain. In this thesis I have discussed the rupture process of some recent tsunamigenic events, as inferred by means of an inverse method. I have presented the 2003 Tokachi-Oki (Japan) earthquake (Mw 8.1). In this study the slip distribution on the fault has been inferred by inverting tsunami waveform, GPS, and bottom-pressure data. The joint inversion of tsunami and geodetic data has revealed a much better constrain for the slip distribution on the fault rather than the separate inversions of single datasets. Then we have studied the earthquake occurred on 2007 in southern Sumatra (Mw 8.4). By inverting several tsunami waveforms, both in the near and in the far field, we have determined the slip distribution and the mean rupture velocity along the causative fault. Since the largest patch of slip was concentrated on the deepest part of the fault, this is the likely reason for the small tsunami waves that followed the earthquake, pointing out how much the depth of the rupture plays a crucial role in controlling the tsunamigenesis. Finally, we have presented a new rupture model for the great 2004 Sumatra earthquake (Mw 9.2). We have performed the joint inversion of tsunami waveform, GPS and satellite altimetry data, to infer the slip distribution, the slip direction, and the rupture velocity on the fault. Furthermore, in this work we have presented a novel method to estimate, in a self-consistent way, the average rigidity of the source zone. The estimation of the source zone rigidity is important since it may play a significant role in the tsunami generation and, particularly for slow earthquakes, a low rigidity value is sometimes necessary to explain how a relatively low seismic moment earthquake may generate significant tsunamis; this latter point may be relevant for explaining the mechanics of the tsunami earthquakes, one of the open issues in present day seismology. The investigation of these tsunamigenic earthquakes has underlined the importance to use a joint inversion of different geophysical data to determine the rupture characteristics. The results shown here have important implications for the implementation of new tsunami warning systems – particularly in the near-field – the improvement of the current ones, and furthermore for the planning of the inundation maps for tsunami-hazard assessment along the coastal area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research reported in this manuscript concerns the structural characterization of graphene membranes and single-walled carbon nanotubes (SWCNTs). The experimental investigation was performed using a wide range of transmission electron microscopy (TEM) techniques, from conventional imaging and diffraction, to advanced interferometric methods, like electron holography and Geometric Phase Analysis (GPA), using a low-voltage optical set-up, to reduce radiation damage in the samples. Electron holography was used to successfully measure the mean electrostatic potential of an isolated SWCNT and that of a mono-atomically thin graphene crystal. The high accuracy achieved in the phase determination, made it possible to measure, for the first time, the valence-charge redistribution induced by the lattice curvature in an individual SWCNT. A novel methodology for the 3D reconstruction of the waviness of a 2D crystal membrane has been developed. Unlike other available TEM reconstruction techniques, like tomography, this new one requires processing of just a single HREM micrograph. The modulations of the inter-planar distances in the HREM image are measured using Geometric Phase Analysis, and used to recover the waviness of the crystal. The method was applied to the case of a folded FGC, and a height variation of 0.8 nm of the surface was successfully determined with nanometric lateral resolution. The adhesion of SWCNTs to the surface of graphene was studied, mixing shortened SWCNTs of different chiralities and FGC membranes. The spontaneous atomic match of the two lattices was directly imaged using HREM, and we found that graphene membranes act as tangential nano-sieves, preferentially grafting achiral tubes to their surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Curved mountain belts have always fascinated geologists and geophysicists because of their peculiar structural setting and geodynamic mechanisms of formation. The need of studying orogenic bends arises from the numerous questions to which geologists and geophysicists have tried to answer to during the last two decades, such as: what are the mechanisms governing orogenic bends formation? Why do they form? Do they develop in particular geological conditions? And if so, what are the most favorable conditions? What are their relationships with the deformational history of the belt? Why is the shape of arcuate orogens in many parts of the Earth so different? What are the factors controlling the shape of orogenic bends? Paleomagnetism demonstrated to be one of the most effective techniques in order to document the deformation of a curved belt through the determination of vertical axis rotations. In fact, the pattern of rotations within a curved belt can reveal the occurrence of a bending, and its timing. Nevertheless, paleomagnetic data alone are not sufficient to constrain the tectonic evolution of a curved belt. Usually, structural analysis integrates paleomagnetic data, in defining the kinematics of a belt through kinematic indicators on brittle fault planes (i.e., slickensides, mineral fibers growth, SC-structures). My research program has been focused on the study of curved mountain belts through paleomagnetism, in order to define their kinematics, timing, and mechanisms of formation. Structural analysis, performed only in some regions, supported and integrated paleomagnetic data. In particular, three arcuate orogenic systems have been investigated: the Western Alpine Arc (NW Italy), the Bolivian Orocline (Central Andes, NW Argentina), and the Patagonian Orocline (Tierra del Fuego, southern Argentina). The bending of the Western Alpine Arc has been investigated so far using different approaches, though few based on reliable paleomagnetic data. Results from our paleomagnetic study carried out in the Tertiary Piedmont Basin, located on top of Alpine nappes, indicate that the Western Alpine Arc is a primary bend that has been subsequently tightened by further ~50° during Aquitanian-Serravallian times (23-12 Ma). This mid-Miocene oroclinal bending, superimposing onto a pre-existing Eocene nonrotational arc, is the result of a composite geodynamic mechanism, where slab rollback, mantle flows, and rotating thrust emplacement are intimately linked. Relying on our paleomagnetic and structural evidence, the Bolivian Orocline can be considered as a progressive bend, whose formation has been driven by the along-strike gradient of crustal shortening. The documented clockwise rotations up to 45° are compatible with a secondary-bending type mechanism occurring after Eocene-Oligocene times (30-40 Ma), and their nature is probably related to the widespread shearing taking place between zones of differential shortening. Since ~15 Ma ago, the activity of N-S left-lateral strike-slip faults in the Eastern Cordillera at the border with the Altiplano-Puna plateau induced up to ~40° counterclockwise rotations along the fault zone, locally annulling the regional clockwise rotation. We proposed that mid-Miocene strike-slip activity developed in response of a compressive stress (related to body forces) at the plateau margins, caused by the progressive lateral (southward) growth of the Altiplano-Puna plateau, laterally spreading from the overthickened crustal region of the salient apex. The growth of plateaux by lateral spreading seems to be a mechanism common to other major plateaux in the Earth (i.e., Tibetan plateau). Results from the Patagonian Orocline represent the first reliable constraint to the timing of bending in the southern tip of South America. They indicate that the Patagonian Orocline did not undergo any significant rotation since early Eocene times (~50 Ma), implying that it may be considered either a primary bend, or an orocline formed during the late Cretaceous-early Eocene deformation phase. This result has important implications on the opening of the Drake Passage at ~32 Ma, since it is definitely not related to the formation of the Patagonian orocline, but the sole consequence of the Scotia plate spreading. Finally, relying on the results and implications from the study of the Western Alpine Arc, the Bolivian Orocline, and the Patagonian Orocline, general conclusions on curved mountain belt formation have been inferred.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study the relation between crustal heterogeneities and complexities in fault processes. The first kind of heterogeneity considered involves the concept of asperity. The presence of an asperity in the hypocentral region of the M = 6.5 earthquake of June 17-th, 2000 in the South Iceland Seismic Zone was invoked to explain the change of seismicity pattern before and after the mainshock: in particular, the spatial distribution of foreshock epicentres trends NW while the strike of the main fault is N 7◦ E and aftershocks trend accordingly; the foreshock depths were typically deeper than average aftershock depths. A model is devised which simulates the presence of an asperity in terms of a spherical inclusion, within a softer elastic medium in a transform domain with a deviatoric stress field imposed at remote distances (compressive NE − SW, tensile NW − SE). An isotropic compressive stress component is induced outside the asperity, in the direction of the compressive stress axis, and a tensile component in the direction of the tensile axis; as a consequence, fluid flow is inhibited in the compressive quadrants while it is favoured in tensile quadrants. Within the asperity the isotropic stress vanishes but the deviatoric stress increases substantially, without any significant change in the principal stress directions. Hydrofracture processes in the tensile quadrants and viscoelastic relaxation at depth may contribute to lower the effective rigidity of the medium surrounding the asperity. According to the present model, foreshocks may be interpreted as induced, close to the brittle-ductile transition, by high pressure fluids migrating upwards within the tensile quadrants; this process increases the deviatoric stress within the asperity which eventually fails, becoming the hypocenter of the mainshock, on the optimally oriented fault plane. In the second part of our work we study the complexities induced in fault processes by the layered structure of the crust. In the first model proposed we study the case in which fault bending takes place in a shallow layer. The problem can be addressed in terms of a deep vertical planar crack, interacting with a shallower inclined planar crack. An asymptotic study of the singular behaviour of the dislocation density at the interface reveals that the density distribution has an algebraic singularity at the interface of degree ω between -1 and 0, depending on the dip angle of the upper crack section and on the rigidity contrast between the two media. From the welded boundary condition at the interface between medium 1 and 2, a stress drop discontinuity condition is obtained which can be fulfilled if the stress drop in the upper medium is lower than required for a planar trough-going surface: as a corollary, a vertically dipping strike-slip fault at depth may cross the interface with a sedimentary layer, provided that the shallower section is suitably inclined (fault "refraction"); this results has important implications for our understanding of the complexity of the fault system in the SISZ; in particular, we may understand the observed offset of secondary surface fractures with respect to the strike direction of the seismic fault. The results of this model also suggest that further fractures can develop in the opposite quadrant and so a second model describing fault branching in the upper layer is proposed. As the previous model, this model can be applied only when the stress drop in the shallow layer is lower than the value prescribed for a vertical planar crack surface. Alternative solutions must be considered if the stress drop in the upper layer is higher than in the other layer, which may be the case when anelastic processes relax deviatoric stress in layer 2. In such a case one through-going crack cannot fulfil the welded boundary conditions and unwelding of the interface may take place. We have solved this problem within the theory of fracture mechanics, employing the boundary element method. The fault terminates against the interface in a T-shaped configuration, whose segments interact among each other: the lateral extent of the unwelded surface can be computed in terms of the main fault parameters and the stress field resulting in the shallower layer can be modelled. A wide stripe of high and nearly uniform shear stress develops above the unwelded surface, whose width is controlled by the lateral extension of unwelding. Secondary shear fractures may then open within this stripe, according to the Coulomb failure criterion, and the depth of open fractures opening in mixed mode may be computed and compared with the well studied fault complexities observed in the field. In absence of the T-shaped decollement structure, stress concentration above the seismic fault would be difficult to reconcile with observations, being much higher and narrower.

Relevância:

100.00% 100.00%

Publicador: