910 resultados para indirect and composite estimators
Resumo:
Objective: The purpose of this study was to assess the influence of conditioning methods and thermocycling on the bond strength between composite core and resin cement. Material and Methods: Eighty blocks (8x8x4 mm) were prepared with core build-up composite. The cementation surface was roughened with 120-grit carbide paper and the blocks were thermocycled (5,000 cycles, between 5 degrees C and 55 degrees C, with a 30 s dwell time in each bath). A layer of temporary luting agent was applied. After 24 h, the layer was removed, and the blocks were divided into five groups, according to surface treatment: (NT) No treatment (control); (SP) Grinding with 120-grit carbide paper; (AC) Etching with 37% phosphoric acid; (SC) Sandblasting with 30 mm SiO2 particles, silane application; (AO) Sandblasting with 50 mu m Al2O3 particles, silane application. Two composite blocks were cemented to each other (n=8) and sectioned into sticks. Half of the specimens from each block were immediately tested for microtensile bond strength (mu TBS), while the other half was subjected to storage for 6 months, thermocycling (12,000 cycles, between 5 degrees C and 55 degrees C, with a dwell time of 30 s in each bath) and mu TBS test in a mechanical testing machine. Bond strength data were analyzed by repeated measures two-way ANOVA and Tukey test (alpha=0.05). Results: The mu TBS was significantly affected by surface treatment (p=0.007) and thermocycling (p=0.000). Before aging, the SP group presented higher bond strength when compared to NT and AC groups, whereas all the other groups were statistically similar. After aging, all the groups were statistically similar. SP submitted to thermocycling showed lower bond strength than SP without thermocycling. Conclusion: Core composites should be roughened with a diamond bur before the luting process. Thermocycling tends to reduce the bond strength between composite and resin cement.
Resumo:
This article describes a new approach of recycling the leather waste (shavings) using it as filler in natural rubber foams composites. The foams were prepared using different amounts of leather waste (0-60 parts per hundred of rubber) and submitted to morphological (SEM microscopy) and mechanical analyses (cyclic stress-strain compression). The increase of leather shavings on the composite causes an increase of viscosity in the mixture, which reflects in the foaming process. This results in smaller and fairly uniform cells. Furthermore, expanded rubber has the biggest cell size, with more than 70% of cell with 1000 mu m, while the composite with the higher concentration of leather has around 80% of total number of cells with 100-400 mu m. The mechanical parameters were found to depend on the leather dust concentration. Moreover, the stiffness rises with the increase of leather shavings; consequently, the compression force for expanded rubber was 0.126 MPa as well as the composite with higher concentration of leather was 7.55 MPa. (c) 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41636.
Resumo:
This study aims to test a new conceptual model based on the relationship between quality management (QM), environmental management maturity (EMM), adoption of external practices of green supply chain management (GSCM) (green purchasing and collaboration with customers) and green performance (GP) with data from 95 Brazilian firms with ISO 14001. To our knowledge, such links and relationships are not simultaneously identified and tested in the literature. The results indicate the validation of all of the research hypotheses. This paper highlights that an improvement in green performance will require attention to quality management, environmental management maturity, and green supply chain.
Resumo:
Nanostructured composites based on titanium dioxide have been studied in order to improve optical and photo-catalytic properties, as well as their performance in gas sensors. In this work, titanium and tin dioxides were simultaneously synthesized by the polyol method resulting in TiO2 platelet coated with SnO2 nanoparticles as was observed by scanning electron microscopy. The thermal analysis showed that the combined synthesis promotes more easily the crystallization of the TiO2 rutile phase. The composite obtained after heat treatment at 500 degrees C showed to be formed of almost only rutile phases of both oxides. The optical properties analyzed by UV-Vis spectroscopy showed that the combined oxides have higher absorbance, which reinforces a model found in the literature based on the flow of photo-generated electrons to the conduction band of SnO2 delaying the recombination of charges.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The study was conducted in two different locations in South Brazil, in tillage in the 2009/2010 season on eight sunflower hybrids, aiming to determine the path correlations and coefficients between primary and secondary characters on the main variable of achene productivity. The correlations were similar between environments. The characters of the head diameter and mass of a thousand achenes had a significant influence on sunflower productivity. Based on the magnitude of the direct and indirect effects, we highlighted all primary components on the main variable, beside the good determination coefficient and low residual effect. The secondary component, the number of achenes, despite the significant direct effect on productivity, was indirectly influenced by the primary components, making it an undesirable character for selection.
Resumo:
The Bi-Sr-Ca-Cu-O system has been one of the most studied superconducting ceramic materials for industry applications. The most of the studies with this aim are on silver/ceramic composites, due to the benefits and great compatibility of this metal with the oxide. In this paper we describe a systematic and comparative study on Ag/BSCCO composite, made by the citrate route, in which the ceramic pellets are sintered in the presence of silver powder using several proportions and having several granulations. It was observed that the introduction of fine (0.5 and 2 μm) silver powder in the proportions of 5 wt. % always implies in a better critical current density compared to the no silver pellet. According to the results, the silver powder in excess of 5 wt.% may not promote best electrical properties, depending on the size of the silver particles.
Resumo:
This study evaluated the influence of light sources and immersion media on the color stability of a nanofilled composite resin. Conventional halogen, high-power-density halogen and high-power-density light-emitting diode (LED) units were used. There were 4 immersion media: coffee, tea, Coke® and artificial saliva. A total of 180 specimens (10 mm x 2 mm) were prepared, immersed in artificial saliva for 24 h at 37±1ºC, and had their initial color measured with a spectrophotometer according to the CIELab system. Then, the specimens were immersed in the 4 media during 60 days. Data from the color change and luminosity were collected and subjected to statistical analysis by the Kruskall-Wallis test (p<0.05). For immersion time, the data were subjected to two-way ANOVA test and Fisher's test (p<0.05). High-power-density LED (ΔE=1.91) promoted similar color stability of the composite resin to that of the tested halogen curing units (Jet Lite 4000 plus--ΔE=2.05; XL 3000--ΔE=2.28). Coffee (ΔE=8.40; ΔL=-5.21) showed the highest influence on color stability of the studied composite resin. There was no significant difference in color stability regardless of the light sources, and coffee was the immersion medium that promoted the highest color changes on the tested composite resin.
Resumo:
The aim of this research was to evaluate the effect of postpolymerization method on the color stability of resin-based composites. Samples of direct and indirect restorative materials were polymerized with two photo-curing units (Visio photo-curing oven system and LED Elipar Freelight 2). All samples were submitted to an initial chromatic analysis using a spectrometer and submitted to ultraviolet-accelerated artificial aging. The direct material showed less color change than the indirect material, independent of the photo-activation method used. Samples photo cured with the LED system showed less change than those photo cured with the Visio system. The postpolymerization oven did not improve the color stability of direct and indirect resin-based composites.
Resumo:
This study evaluated the effect of different dentifrices on the microhardness and surface roughness of composite surfaces covered by surface sealants. Samples of Filtek P60 were made and divided into groups, in accordance with surface treatments: G1 - Fortify; G2 - Fortify Plus; G3 - control (none). For Knoop microhardness evaluation, the specimens were placed in a microdurometer, under a load of 50 g for 15 sec. The analyses of surface roughness were carried out individually in a profilometer. The specimens were submitted to toothbrushing using dentifrices: Colgate Maximum Protection Anti-caries, Colgate Whitening or Sensodyne, diluted in distilled water (1:3) for 30 000 cycles. The results showed that the control group (G3) presented the highest microhardness values. The control group presented, before toothbrushing, the lowest surface roughness values, and after toothbrushing there were no differences among the experimental groups. The maintenance of the lowest values of microhardness demonstrated the effectiveness of these sealant materials to support the abrasive wear.
Resumo:
The aims of this study were to evaluate the effect of root canal filling techniques on root fracture resistance and to analyze, by finite element analysis (FEA), the expansion of the endodontic sealer in two different root canal techniques. Thirty single-rooted human teeth were instrumented with rotary files to a standardized working length of 14 mm. The specimens were embedded in acrylic resin using plastic cylinders as molds, and allocated into 3 groups (n=10): G(lateral) - lateral condensation; G(single-cone) - single cone; G(tagger) - Tagger's hybrid technique. The root canals were prepared to a length of 11 mm with the #3 preparation bur of a tapered glass fiber-reinforced composite post system. All roots received glass fiber posts, which were adhesively cemented and a composite resin core was built. All groups were subjected to a fracture strength test (1 mm/min, 45°). Data were analyzed statistically by one-way ANOVA with a significance level of 5%. FEA was performed using two models: one simulated lateral condensation and Tagger's hybrid technique, and the other one simulated the single-cone technique. The second model was designed with an amount of gutta-percha two times smaller and a sealer layer two times thicker than the first model. The results were analyzed using von Mises stress criteria. One-way ANOVA indicated that the root canal filling technique affected the fracture strength (p=0.004). The G(lateral) and G(tagger) produced similar fracture strength values, while G(single-cone) showed the lowest values. The FEA showed that the single-cone model generated higher stress in the root canal walls. Sealer thickness seems to influence the fracture strength of restored endodontically treated teeth.
Resumo:
Case Report. An 8-year-old girl with amelogenesis imperfecta (AI) reported unsatisfactory aesthetics, difficulty in mastication, and dental hypersensitivity. The intraoral examination observed mixed dentition, malocclusion in anteroposterior relationships, anterior open bite, and dental asymmetry. A hypoplastic form of AI was diagnosed in the permanent dentition. A multidisciplinary planning was performed and divided into preventive, orthopedic, and rehabilitation stages. Initially, preventive treatment was implemented, with fluoride varnish applications, in order to protect the fragile enamel and reduce the dental sensitivity. In the second stage, the patient received an interceptive orthopedic treatment to improve cross-relationship of the arches during six months. Finally, the rehabilitation treatment was executed to establish the vertical dimension. In the posterior teeth, indirect composite resin crowns were performed with minimally invasive dental preparation. Direct composite resin restorations were used to improve the appearance of anterior teeth. Follow-Up. The follow-up was carried out after 3, 6, 12, and 18 months. After 18 months of follow-up, The restoration of integrity, oral hygiene, and patient satisfaction were observed . Conclusion. Successful reduction of the dental hypersensitivity and improvement of the aesthetic and functional aspects as well as quality of life were observed.
Resumo:
This study evaluated the in vitro enamel remineralization capacity of experimental composite resins containing sodium trimetaphosphate (TMP) combined or not with fluoride (F). Bovine enamel slabs were selected upon analysis of initial surface hardness (SH1) and after induction of artificial carious lesions (SH2). Experimental resins were as follows: resin C (control-no sodium fluoride (NaF) or TMP), resin F (with 1.6 % NaF), resin TMP (with 14.1 % TMP), and resin TMP/F (with NaF and TMP). Resin samples were made and attached to enamel slabs (n = 12 slabs per material). Those specimens (resin/enamel slab) were subjected to pH cycling to promote remineralization, and then final surface hardness (SH3) was measured to calculate the percentage of surface hardness recovery (%SH). The integrated recovery of subsurface hardness (ΔKHN) and F concentration in enamel were also determined. Data was analyzed by ANOVA and Student-Newman-Keuls test (p < 0.05). Resins F and TMP/F showed similar SH3 values (p = 0.478) and %SH (p = 0.336) and differed significantly from the other resins (p < 0.001). Considering ΔKHN values, resin TMP/F presented the lowest area of lesion (p < 0.001). The presence of F on enamel was different among the fluoridated resins (p = 0.042), but higher than in the other resins (p < 0.001). The addition of TMP to a fluoridated composite resin enhanced its capacity for remineralization of enamel in vitro. The combination of two agents with action on enamel favored remineralization, suggesting that composite resins containing sodium trimetaphosphate and fluoride could be indicated for clinical procedures in situations with higher cariogenic challenges.
Resumo:
The pirarucu (giant red fish), Arapaima gigas (Cuvier), (Arapaimidae) is among the diverse fish resources of Amazonia which are threatened by over-exploitation. Little is known about the biology of this species despite its commercial importance. The present paper provides indirect information about the length-frequency structure of the stock which was estimated by sampling its tongue bone in craft shops and weighing fresh manias (processed fish product) in fish markets since these were the only remaining recognizable features of the fish. The length-frequency reconstruction was carried out using a regression analysis calculated by utilizing individuals caught in experimental fishing.
Resumo:
The pirarucu (giant red fish), Arapaima gigas (Cuvier), (Arapaimidae) is among the diverse fish resources of Amazonia which are threatened by over-exploitation. Little is known about the biology of this species despite its commercial importance. The present paper provides indirect information about the length-frequency structure of the stock which was estimated by sampling its tongue bone in craft shops and weighing fresh manias (processed fish product) in fish markets since these were the only remaining recognizable features of the fish. The length-frequency reconstruction was carried out using a regression analysis calculated by utilizing individuals caught in experimental fishing.