997 resultados para hunting subsistence strategies
Resumo:
Twelve novel 1,3-dialkylimidazolium salts containing strongly electron-withdrawing nitro-and cyano-functionalities directly appended to the cationic heterocyclic rings have been synthesized; the influences of the substituents on both formation and thermal properties of the resultant ionic liquids have been determined by DSC, TGA, and single crystal X-ray diffraction, showing that an electron-withdrawing nitro-substituent can be successfully appended and has a similar influence on the melting behaviour as that of corresponding methyl group substitution. Synthesis of di-, or trinitro-substituted 1,3-dialkylimidazolium cations was unsuccessful due to the resistance of dinitro-substituted imidazoles to undergo either N-alkylation or protonation, while 1-alkyl- 4,5-dicyanoimidazoles were successfully alkylated to obtain 1,3-dialkyl-4,5-dicyanoimidazolium salts. Five crystal structures ( one of each cation type) show that, in the solid state, the NO2-group has little significant effect, beyond the steric contribution, on the crystal packing.
Resumo:
Light and photosensitizer-mediated killing of many pathogens, termed photodynamic antimicrobial chemotherapy (PACT), has been extensively investigated in vitro. A wide range of organisms from the Gram-positive Staphylococcus aureus to the Gram-negative Pseudomonas aeruginosa have been proven to be susceptible to PACT. Multidrug-resistant strains are just as susceptible to this treatment as their naive counterparts. Both enveloped and non-enveloped viruses have demonstrated susceptibility in vitro, in addition to fungi and protozoa. Significantly, however, no clinical treatments based on PACT are currently licensed. This paper provides a comprehensive review of work carried out to date on delivery of photosensitizers for use in PACT, including topical, intranasal and oral/buccal delivery, as well as targeted delivery. We have also reviewed photo-antimicrobial surfaces. It is hoped that, through a rational approach to formulation design and subsequent success in small-scale clinical trials, more widespread use will be made of PACT in the clinic, to the benefit of patients worldwide. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
An analogue of the bisphosphonate drug Ibandronate was prepared and coupled via a cleavable ester function to a bromoacetyl linker with specific reactivity for thiol groups. This compound should find useful applications in therapeutic strategies aiming to deliver bisphosphonate drugs specifically to cancer cells making use of proteins as vectors. The specific delivery of bisphosphonates to cancer cells instead of bone, the usual site of accumulation of these cytotoxic drugs, could greatly widen their therapeutic applications.
Resumo:
Agonistic behaviour between male orb-web spiders Metellina mengei competing for access to female webs was examined in field experiments to test the major predictions of game theory. Winners of fights were significantly larger than losers, particularly with respect to the length of the first pair of legs, which are sexually dimorphic in this species and used extensively in agonistic encounters. The size of the winning male had no influence on contest intensity or duration, and neither did relative size. However, fight intensity and duration were both positively correlated with the size of the losing male. Resident males won significantly more contests than intruders. Winning intruders were significantly larger than winning residents and it was these winning intruders that tended to produce the longer fights. Female weight and hence reproductive value had a marked influence on fight intensity and duration of fights won by the intruder but not those won by the resident. This indicates that only the resident obtains information about the female. These data are discussed with reference to the discrepancy with theory and a failure of some contestants to obtain information on resource value and relative contestant size necessary to optimize fight strategy.
Resumo:
Photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) are techniques that combine the effects of visible light irradiation with subsequent biochemical events that arise from the presence of a photosensitizing drug (possessing no dark toxicity) to cause destruction of selected cells. Despite its still widespread clinical use, Photofrin (R) has several drawbacks that limit its general clinical use. Consequently, there has been extensive research into the design of improved alternative photosensitizers aimed at overcoming these drawbacks. While there are many review articles on the subject of PDT and PACT, these have focused on the photosensitizers that have been used clinically, with little emphasis placed on how the chemical aspects of the molecule can affect their efficacy as PDT agents. Indeed, many of the PDT/PACT agents used clinically may not even be the most appropriate within a given class. As such, this review aims to provide a better understanding of the factors that have been investigated, while aiming at improving the efficacy of a molecule intended to be used as a photosensitizer. Recent publications, spanning the last 5 years, concerning the design, synthesis and clinical usage of photosensitizers for application in PDT and PACT are reviewed, including 5-aminolevulinic acid, porphyrins, chlorins, bacteriochlorins, texaphyrins, phthalocyanines and porphycenes. It has been shown that there are many important considerations when designing a potential PDT/PACT agent, including the influence of added groups on the lipophilicity of the molecule, the positioning and nature of these added groups within the molecule, the presence of a central metal ion and the number of charges that the molecule possesses. The extensive ongoing research within the field has led to the identification of a number of potential lead molecules for application in PDT/PACT. The development of the second-generation photosensitizers, possessing shorter periods of photosensitization, longer activation wavelengths and greater selectivity for diseased tissue provides hope for attaining the ideal photosensitizer that may help PDT and PACT move from laboratory investigation to clinical practice.
Resumo:
Until recently, the central nervous system (CNS) has been thought to be an immune privileged organ. However, it is now understood that neuroinflammation is linked with the development of several CNS diseases including late-onset Alzheimer's disease (LOAD). The development of inflammation is a complex process involving a wide array of molecular interactions which in the CNS remains to be further characterized. The development of neuroinflammation may represent an important link between the early stages of LOAD and its pathological outcome. It is proposed that risks for LOAD, which include genetic, biological and environmental factors can each contribute to impairment of normal CNS regulation and function. The links between risk factors and the development of neuroinflammation are numerous and involve many complex interactions which contribute to vascular compromise, oxidative stress and ultimately neuroinflammation. Once this cascade of events is initiated, the process of neuroinflammation can become overactivated resulting in further cellular damage and loss of neuronal function. Additionally, neuroinflammation has been associated with the formation of amyloid plaques and neurofibrillary tangles, the pathological hallmarks of LOAD. Increased levels of inflammatory markers have been correlated with an advanced cognitive impairment. Based on this knowledge, new therapies aimed at limiting onset of neuroinflammation could arrest or even reverse the development of the disease.