946 resultados para hollow Gaussian beams
Resumo:
In this paper, we present an integrated system for real-time automatic detection of human actions from video. The proposed approach uses the boundary of humans as the main feature for recognizing actions. Background subtraction is performed using Gaussian mixture model. Then, features are extracted from silhouettes and Vector Quantization is used to map features into symbols (bag of words approach). Finally, actions are detected using the Hidden Markov Model. The proposed system was validated using a newly collected real- world dataset. The obtained results show that the system is capable of achieving robust human detection, in both indoor and outdoor environments. Moreover, promising classification results were achieved when detecting two basic human actions: walking and sitting.
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos
Resumo:
Programa Doutoral em Matemática e Aplicações.
Resumo:
Preprint submitted to International Journal of Solids and Structures. ISSN 0020-7683
Resumo:
The main features of most components consist of simple basic functional geometries: planes, cylinders, spheres and cones. Shape and position recognition of these geometries is essential for dimensional characterization of components, and represent an important contribution in the life cycle of the product, concerning in particular the manufacturing and inspection processes of the final product. This work aims to establish an algorithm to automatically recognize such geometries, without operator intervention. Using differential geometry large volumes of data can be treated and the basic functional geometries to be dealt recognized. The original data can be obtained by rapid acquisition methods, such as 3D survey or photography, and then converted into Cartesian coordinates. The satisfaction of intrinsic decision conditions allows different geometries to be fast identified, without operator intervention. Since inspection is generally a time consuming task, this method reduces operator intervention in the process. The algorithm was first tested using geometric data generated in MATLAB and then through a set of data points acquired by measuring with a coordinate measuring machine and a 3D scan on real physical surfaces. Comparison time spent in measuring is presented to show the advantage of the method. The results validated the suitability and potential of the algorithm hereby proposed
Resumo:
The currently available clinical imaging methods do not provide highly detailed information about location and severity of axonal injury or the expected recovery time of patients with traumatic brain injury [1]. High-Definition Fiber Tractography (HDFT) is a novel imaging modality that allows visualizing and quantifying, directly, the degree of axons damage, predicting functional deficits due to traumatic axonal injury and loss of cortical projections. This imaging modality is based on diffusion technology [2]. The inexistence of a phantom able to mimic properly the human brain hinders the possibility of testing, calibrating and validating these medical imaging techniques. Most research done in this area fails in key points, such as the size limit reproduced of the brain fibers and the quick and easy reproducibility of phantoms [3]. For that reason, it is necessary to develop similar structures matching the micron scale of axon tubes. Flexible textiles can play an important role since they allow producing controlled packing densities and crossing structures that match closely the human crossing patterns of the brain. To build a brain phantom, several parameters must be taken into account in what concerns to the materials selection, like hydrophobicity, density and fiber diameter, since these factors influence directly the values of fractional anisotropy. Fiber cross-section shape is other important parameter. Earlier studies showed that synthetic fibrous materials are a good choice for building a brain phantom [4]. The present work is integrated in a broader project that aims to develop a brain phantom made by fibrous materials to validate and calibrate HDFT. Due to the similarity between thousands of hollow multifilaments in a fibrous arrangement, like a yarn, and the axons, low twist polypropylene multifilament yarns were selected for this development. In this sense, extruded hollow filaments were analysed in scanning electron microscope to characterize their main dimensions and shape. In order to approximate the dimensional scale to human axons, five types of polypropylene yarns with different linear density (denier) were used, aiming to understand the effect of linear density on the filament inner and outer areas. Moreover, in order to achieve the required dimensions, the polypropylene filaments cross-section was diminished in a drawing stage of a filament extrusion line. Subsequently, tensile tests were performed to characterize the mechanical behaviour of hollow filaments and to evaluate the differences between stretched and non-stretched filaments. In general, an increase of the linear density causes the increase in the size of the filament cross section. With the increase of structure orientation of filaments, induced by stretching, breaking tenacity increases and elongation at break decreases. The production of hollow fibers, with the required characteristics, is one of the key steps to create a brain phantom that properly mimics the human brain that may be used for the validation and calibration of HDFT, an imaging approach that is expected to contribute significantly to the areas of brain related research.
Resumo:
A novel framework for probabilistic-based structural assessment of existing structures, which combines model identification and reliability assessment procedures, considering in an objective way different sources of uncertainty, is presented in this paper. A short description of structural assessment applications, provided in literature, is initially given. Then, the developed model identification procedure, supported in a robust optimization algorithm, is presented. Special attention is given to both experimental and numerical errors, to be considered in this algorithm convergence criterion. An updated numerical model is obtained from this process. The reliability assessment procedure, which considers a probabilistic model for the structure in analysis, is then introduced, incorporating the results of the model identification procedure. The developed model is then updated, as new data is acquired, through a Bayesian inference algorithm, explicitly addressing statistical uncertainty. Finally, the developed framework is validated with a set of reinforced concrete beams, which were loaded up to failure in laboratory.
Resumo:
In this study, the macro steel fiber (SF), carbon fiber (CF) and nano carbon black (NCB) as triphasic conductive materials were added into concrete, in order to improve the conductivity and ductility of concrete. The influence of NCB, SF and CF on the post crack behavior and conductivity of concrete was explored. The effect of the triphasic conductive materials on the self-diagnosing ability to the load–deflection property and crack widening of conductive concrete member subjected to bending were investigated. The relationship between the fractional change in surface impedance (FCR) and the crack opening displacement (COD) of concrete beams with conductive materials has been established. The results illustrated that there is a linear relationship between COD and FCR.
Resumo:
Observers can adjust the spectrum of illumination on paintings for optimal viewing experience. But can they adjust the colors of paintings for the best visual impression? In an experiment carried out on a calibrated color moni- tor images of four abstract paintings obtained from hyperspectral data were shown to observers that were unfamiliar with the paintings. The color volume of the images could be manipulated by rotating the volume around the axis through the average (a*, b*) point for each painting in CIELAB color space. The task of the observers was to adjust the angle of rotation to produce the best subjective impression from the paintings. It was found that the distribution of angles selected for data pooled across paintings and observers could be de- scribed by a Gaussian function centered at 10o, i.e. very close to the original colors of the paintings. This result suggest that painters are able to predict well what compositions of colors observers prefer.
Resumo:
We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction.
Resumo:
Dissertação de mestrado Internacional em Sustentabilidade do Ambiente Construído
Resumo:
Tese de Doutoramento em Engenharia Civil
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado integrado em Engenharia Civil