934 resultados para histone H4 acetylation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Chromatin Accessibility Complex (CHRAC) consists of the ATPase ISWI, the large ACF1 subunit and a pair of small histone-like proteins, CHRAC-14/16. CHRAC is a prototypical nucleosome sliding factor that mobilizes nucleosomes to improve the regularity and integrity of the chromatin fiber. This may facilitate the formation of repressive chromatin. Expression of the signature subunit ACF1 is restricted during embryonic development, but remains high in primordial germ cells. Therefore, we explored roles for ACF1 during Drosophila oogenesis. ACF1 is expressed in somatic and germline cells, with notable enrichment in germline stem cells and oocytes. The asymmetrical localization of ACF1 to these cells depends on the transport of the Acf1 mRNA by the Bicaudal-D/Egalitarian complex. Loss of ACF1 function in the novel Acf1(7) allele leads to defective egg chambers and their elimination through apoptosis. In addition, we find a variety of unusual 16-cell cyst packaging phenotypes in the previously known Acf1(1) allele, with a striking prevalence of egg chambers with two functional oocytes at opposite poles. Surprisingly, we found that the Acf1(1) deletion - despite disruption of the Acf1 reading frame - expresses low levels of a PHD-bromodomain module from the C-terminus of ACF1 that becomes enriched in oocytes. Expression of this module from the Acf1 genomic locus leads to packaging defects in the absence of functional ACF1, suggesting competitive interactions with unknown target molecules. Remarkably, a two-fold overexpression of CHRAC (ACF1 and CHRAC-16) leads to increased apoptosis and packaging defects. Evidently, finely tuned CHRAC levels are required for proper oogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Induction of cell-autonomous apoptosis following oncogene-induced overproliferation is a major tumor-suppressive mechanism in vertebrates. However, the detailed mechanism mediating this process remains enigmatic. In this study, we demonstrate that dMyc-induced cell-autonomous apoptosis in the fruit fly Drosophila melanogaster relies on an intergenic sequence termed the IRER (irradiation-responsive enhancer region). The IRER mediates the expression of surrounding proapoptotic genes, and we use an in vivo reporter of the IRER chromatin state to gather evidence that epigenetic control of DNA accessibility within the IRER is an important determinant of the strength of this response to excess dMyc. In a previous work, we showed that the IRER also mediates P53-dependent induction of proapoptotic genes following DNA damage, and the chromatin conformation within IRER is regulated by polycomb group-mediated histone modifications. dMyc-induced apoptosis and the P53-mediated DNA damage response thus overlap in a requirement for the IRER. The epigenetic mechanisms controlling IRER accessibility appear to set thresholds for the P53- and dMyc-induced expression of apoptotic genes in vivo and may have a profound impact on cellular sensitivity to oncogene-induced stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phenomenon of premature chromosome condensation, resulting from fusion between mitotic and interphase cells, includes dissolution of the interphase nuclear framework, thus allowing a direct visualization of interphase chromosomes. Light microscope morphology of prematurely condensed chromosomes (PCC) from synchronized HeLa cells supports the model of an interphase "chromosome condensation cycle". PCC are increasingly attenuated as cells progress through G(,1). A maximum degree of decondensation is observed at active sites of DNA replication during S phase, and a condensed morphology is rapidly resumed following completion of replication of a chromosome segment.^ To permit ultrastructural and biochemical studies of PCC, a procedure was developed to induce premature chromosome condensation at high frequency. This was achieved by polyethylene glycol (PEG)-mediated fusion of a dense monolayer of mitotic and interphase cells induced by centrifugation onto lectin-coated culture dishes. Using this method, PCC induction frequencies of 60-90% are routinely obtained.^ Scanning electron microscope analysis of PCC spreads revealed that the extension of PCC during progression through G(,1) is accompanied by a transition of the basic 30 nm chromatin fiber from tightly packed looping fibers to extended longitudinal fibers. Sites of active DNA replication is S-PCC were indicated to be organized a single longitudinal fibers. Following replication of a chromosome segment, a rapid reorganization from the extended longitudinal fiber to packed looping fibers occurs. The postreplication maturation process appears to include the assembly of a chromosome core consisting of multiple longitudinal fibers.^ The role of histone H1 phosphorylation in PCC formation was investigated by acidurea polyacrylamide gel electrophoresis of total histone extracted from metaphase chromosomes and PCC following high frequency fusion. This investigation failed to demonstrate an extensive phosphorylation of H1 associated with PCC formation. However, significant dephosphorylation of superphosphorylated metaphase chromosome H1 was observed, indicating that interphase H1-phosphatase activity is dominant over metaphase H1 kinase activity. These observations provide evidence against models suggesting a role for H1 superphosphorylation in triggering mitotic condensation of chromosomes. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MacroH2A is a core histone variant that plays an important role in the X-inactivation process during differentiation of embryonic stem cells. It has been shown that macroH2A changes in localization during the cell cycle of somatic cells. This study aims to determine how macroH2A changes during the cell cycle of embryonic stem cells. Male and female mouse embryonic stem cells were transfected with a GFP::macroH2A construct and the relationship between macroH2A and the cell cycle was determined using FACS. This study shows that macroH2A is altered during the cell cycle of embryonic stem cells as it is in somatic cells and that in randomly cycling cells, there is a correlation between macroH2A expression and the phases of the cell cycle. High GFP expressing cells are mostly in the G2/M phase and low GFP expressing cells are mostly in the G1 phase. This correlation indicated that macroH2A is replicated with cellular DNA during the S phase resulting in higher expression in the G2/M phase. Future research, such as RT-PCR and differentiation experiments, is needed to further study this relationship and determine whether this change is at the protein or RNA level and how it changes during differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell to cell adhesion molecule (CEACAM1), a type II tumor suppressor, has been found to be down-regulated in prostate cancer cells. The mechanism that causes CEACAM1's down-regulation in tumorigenesis is unknown. Here we show that the transcriptional activity of CEACAM1 is decreased in prostate cancer cells. This decrease is not due to methylation of the CEACAM1's promoter, but rather to the alteration of transcription factors regulating CEACAM1 expression. ^ Since androgen/androgen receptors (AR) are potent regulators of prostate growth and differentiation, their role on CEACAM1 gene transcription was examined. The androgen receptor could directly increase CEACAM1 transcriptional activity in a ligand dependent manner by interacting with an AR consensus element that resides in the CEACAM1 promoter. However, AR binding to the CEACAM1 promoter is not related to the loss of CEACAM1 during prostate cancer progression. ^ Further analysis enabled us to determine the particular region in the CEACAM1 promoter that mediates a decrease in CEACAM1 transcriptional activity in prostate cancer cells. Upon further examination, we found that this CEACAM1 promoter region interacts with the Sp1, Sp2, and Sp3 transcription factors. However, only Sp2 expression was found to increase in prostate cancer cells. Inhibiting Sp2 from binding to the CEACAM1 promoter caused an increase in CEACAM1 transcriptional activity in prostate cancer cells. In addition, over-expressing Sp2 in normal prostate cells resulted in a decrease in CEACAM1 transcriptional activity and endogenous protein expression. These observations suggest that Sp2 is a transcription repressor of CEACAM1. Furthermore, prostate cancer cells treated with trichostatin A (TSA), a specific histone deacetylase (HDAC) inhibitor, activated CEACAM1 transcriptional activity. This implies that HDACs are involved in CEACAM1 transcriptional activity. Mutation of the Sp2 DNA binding region on the CEACAM1 promoter inhibited TSA activation of CEACAM1 transcriptional activity. This indicates that HDACs inhibit CEACAM1 transcriptional activity through Sp2. Base on these results, we propose that Sp2 is critical for down-regulating CEACAM1 expression, and one mechanism by which Sp2 represses CEACAM1 expression is by recruiting HDAC to the CEACAM1 promoter in prostate cancer cells. Collectively, these findings provide novel insights into mechanisms that cause the down-regulation of CEACAM1 expression in prostate cancer cells. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

hrsg. von Theodor Zlocisti

Relevância:

10.00% 10.00%

Publicador:

Resumo:

von Felix Perles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

von Friedrich Küchler

Relevância:

10.00% 10.00%

Publicador:

Resumo:

hrsg. von Koppelmann Lieben

Relevância:

10.00% 10.00%

Publicador:

Resumo:

von M. H. Friedlaender

Relevância:

10.00% 10.00%

Publicador:

Resumo:

von C. Berg

Relevância:

10.00% 10.00%

Publicador:

Resumo:

geordnet und übersetzt von W. Heidenheim