903 resultados para high power laser system
Resumo:
Remotely operated vehicle (ROV) surveys were conducted from NOAA’s state-of-the-art Fisheries Survey Vessel (FSV) Bell M. Shimada during a six-day transit November 1-5, 2010 between San Diego, CA and Seattle, WA. The objective of this survey was to locate and characterize deep-sea coral and sponge ecosystems at several recommended sites in support of NOAA’s Coral Reef Conservation Program. Deep-sea corals and sponges were photographed and collected whenever possible using the Southwest Fisheries Science Center’s (SWFSC) Phantom ROV ‘Sebastes’ (Fig. 1). The surveyed sites were recommended by National Marine Sanctuary (NMS) scientists at Monterey Bay NMS, Gulf of the Farallones NMS, and Olympic Coast NMS (Fig. 2). The specific sites were: Sur Canyon, The Football, Coquille Bank, and Olympic Coast NMS. During each dive, the ROV collected digital still images, video, navigation, and along-track conductivity-temperature-depth (CTD), and optode data. Video and high-resolution photographs were used to quantify abundance of corals, sponges, and associated fishes and invertebrates to the lowest practicable taxonomic level, and also to classify the seabed by substrate type. A reference laser system was used to quantify area searched and estimate the density of benthic fauna.
Resumo:
For Micro-electro-mechanical System (MEMS) applications, TiNi-based thin film Shape Memory Alloys (SMAs) possess many desirable properties, such as high power density, large transformation stress and strain upon heating and cooling, superelasticity and biocompatibility. In this paper, recent development in TiNi-based thin film SMA and microactuator applications is discussed. The topics related to film deposition and characterisation is mainly focused on crystal nucleation and growth during annealing, film thickness effect, film texture, stress induced surface relief, wrinkling and trenches as well as Temperature Memory Effect (TME). The microactuator applications are mainly focused on microvalve and microcage for biological applications, micromirror for optical applications and data storage using nanoindentation method. Copyright © 2009, Inderscience Publishers.
Resumo:
The combination of high frequency, high power, high efficiency capabilities is a feature of vacuum tube technology. For most of applications, large bandwidths are required, and therefore the modulation method should also allow large bandwidth operation. Optically modulated cold cathodes, avoiding the use of resonant cavities, should satisfy this requirement. This is the reason why we have developed carbon nanotube based photocathode.© 2009 IEEE.
Resumo:
A water spray chumming system consisting of a 65 x 50 mm centrifugal pump driven by the propulsion engine through a PTO clutch and 'V' pulley power transmission system has been developed for the pole and line fishing of tuna. Water is sprayed through pipe loop system fitted on the edge of the fishing platform of the boat through small holes. The distance of the spray length can be adjusted by controlling the flow of the pump discharge water through a wheel valve.
Resumo:
We report on our work on producing liquid crystal switchable modal lenses and their use in a compound lens system in order to produce variable focus/zoom lenses. We describe work on producing a high power lens, and present theoretical work on off-axis phase modulation in a liquid crystal lens which is important in order to be able to carry out a complete optical design of a liquid crystal lens.
Resumo:
Four fast reactor concepts using lead (LFR), liquid salt, NaCl-KCl-MgCl2 (LSFR), sodium (SFR), and supercritical CO2 (GFR) coolants are compared. Since economy of scale and power conversion system compactness are the same by virtue of the consistent 2400 MWt rating and use of the S-CO2 power conversion system, the achievable plant thermal efficiency, core power density and core specific powers become the dominant factors. The potential to achieve the highest efficiency among the four reactor concepts can be ranked from highest to lowest as follows: (1) GFR, (2) LFR and LSFR, and (3) SFR. Both the lead- and salt-cooled designs achieve about 30% higher power density than the gas-cooled reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor. Fuel cycle costs are favored for the sodium reactor by virtue of its high specific power of 65 kW/kgHM compared to the lead, salt and gas reactor values of 45, 35, and 21 kW/kgHM, respectively. In terms of safety, all concepts can be designed to accommodate the unprotected limiting accidents through passive means in a self-controllable manner. However, it does not seem to be a preferable option for the GFR where the active or semi-passive approach will likely result in a more economic and reliable plant. Lead coolant with its superior neutronic characteristics and the smallest coolant temperature reactivity coefficient is easiest to design for self-controllability, while the LSFR requires special reactivity devices to overcome its large positive coolant temperature coefficient. The GFR required a special core design using BeO diluent and a supercritical CO2 reflector to achieve negative coolant void worth-one of the conditions necessary for inherent shutdown following large LOCA. Protected accidents need to be given special attention in the LSFR and LFR due to the small margin to freezing of their coolants, and to a lesser extent in the SFR. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Up to 50% increase in the power density of the existing pressurized water reactor (PWR)-type reactors can be achieved by the use of internally and externally cooled annular fuel geometry. As a result, the accumulated stock-piles of Pu, especially if incorporated infertile-free inert matrix, can be burnt at a substantially higher rate as compared with the conventional mixed oxide-fueled reactors operating at standard power density. In this work, we explore the basic feasibility of a PWR core fully loaded with Pu incorporated infertile-free fuel of annular internally and externally cooled geometry and operating at 150% of nominal power density. We evaluate basic burnable poison designs, fuel management strategies, and reactivity feedback coefficients. The three-dimensional full core neutronic analysis performed with Studsvik Core Management System showed that the design of such a Pu-loaded annular fuel core is feasible but significantly more challenging than the Pu fertile-free core with solid fuel pins operating at nominal power density. The main difficulty arises from the fact that the annular fuel core requires at least 50% higher initial Pu loading in order to maintain the standard fuel cycle length of 18 months. Such a high Pu loading results in hardening of the neutron spectrum and consequent reduction in reactivity worth of all reactivity control mechanisms and, in some cases, positive moderator temperature coefficient (MTC). The use of isotopically enriched Gd and Er burnable poisons was found to be beneficial with respect to maximizing Pu burnup and reducing power peaking factors. Overall, the annular fertile-free Pu-loaded high-power-density core appears to be feasible, although it still has relatively high power peaking and potential for slightly positive MTC at beginning of cycle. However, we estimate that limiting the power density to 140% of the nominal case would assure acceptable core power peaking and negative MTC at all times during the cycle.
Resumo:
Experimental demonstration of lasing in a broad area twin-contact semiconductor laser which operates as a phase-conjugation (PC) mirror in an external cavity configuration is reported. This allows "self-aligned" and self-pumped spatially nondegenerate four-wave mixing to be achieved without the need for external optical signals. The external cavity laser system is very insensitive to tilt misalignments of the external mirror in the PC regime and exhibits very good mechanical stability. The resonant frequency of the external cavity lies in the GHz range which corresponds to a subnanosecond time response of phase conjugation processes in the semiconductor laser. © 1997 American Institute of Physics.
Resumo:
In this article, we describe a simple method to reversibly tune the wetting properties of vertically aligned carbon nanotube (CNT) arrays. Here, CNT arrays are defined as densely packed multi-walled carbon nanotubes oriented perpendicular to the growth substrate as a result of a growth process by the standard thermal chemical vapor deposition (CVD) technique.(1,2) These CNT arrays are then exposed to vacuum annealing treatment to make them more hydrophobic or to dry oxidation treatment to render them more hydrophilic. The hydrophobic CNT arrays can be turned hydrophilic by exposing them to dry oxidation treatment, while the hydrophilic CNT arrays can be turned hydrophobic by exposing them to vacuum annealing treatment. Using a combination of both treatments, CNT arrays can be repeatedly switched between hydrophilic and hydrophobic.(2) Therefore, such combination show a very high potential in many industrial and consumer applications, including drug delivery system and high power density supercapacitors.(3-5) The key to vary the wettability of CNT arrays is to control the surface concentration of oxygen adsorbates. Basically oxygen adsorbates can be introduced by exposing the CNT arrays to any oxidation treatment. Here we use dry oxidation treatments, such as oxygen plasma and UV/ozone, to functionalize the surface of CNT with oxygenated functional groups. These oxygenated functional groups allow hydrogen bond between the surface of CNT and water molecules to form, rendering the CNT hydrophilic. To turn them hydrophobic, adsorbed oxygen must be removed from the surface of CNT. Here we employ vacuum annealing treatment to induce oxygen desorption process. CNT arrays with extremely low surface concentration of oxygen adsorbates exhibit a superhydrophobic behavior.
Resumo:
This paper presents a novel method of using experimentally observed optical phenomena to reverse-engineer a model of the carbon nanofiber-addressed liquid crystal microlens array (C-MLA) using Zemax. It presents the first images of the optical profile for the C-MLA along the optic axis. The first working optical models of the C-MLA have been developed by matching the simulation results to the experimental results. This approach bypasses the need to know the exact carbon nanofiber-liquid crystal interaction and can be easily adapted to other systems where the nature of an optical device is unknown. Results show that the C-MLA behaves like a simple lensing system at 0.060-0.276 V/μm. In this lensing mode the C-MLA is successfully modeled as a reflective convex lens array intersecting with a flat reflective plane. The C-MLA at these field strengths exhibits characteristics of mostly spherical or low order aspheric arrays, with some aspects of high power aspherics. It also exhibits properties associated with varying lens apertures and strengths, which concur with previously theorized models based on E-field patterns. This work uniquely provides evidence demonstrating an apparent "rippling" of the liquid crystal texture at low field strengths, which were successfully reproduced using rippled Gaussian-like lens profiles. © 2014 Published by Elsevier B.V.
Resumo:
The authors present numerical simulations of ultrashort pulse generation by a technique of linear spectral broadening in phase modulators and compression in dispersion compensating fibre, followed by a further stage of soliton compression in dispersion shifted fibre. This laser system is predicted to generate pulses of 140 fs duration with a peak power of 1.5 kW over a wide, user selectable repetition rate range while maintaining consistent characteristics of stability and pulse quality. The use of fibre compressors and commercially available modulators is expected to make the system setup compact and cost-effective. © The Institution of Engineering and Technology 2014.
Resumo:
Quantum-dot active material systems are proving to be an excellent choice for mode-locked laser applications. High-power, high repetition-rate picosecond and sub-picosecond pulse generation is now readily achievable with promising results for ultra-low jitter performance. © 2006 Optical Society of America.
Resumo:
Stochastic resonance (SR) induced by the signal modulation is investigated, by introducing the signal-modulated gain into a single-mode laser system. Using the linear approximation method, we detailedly calculate the signal-to-noise ratio (SNR) of a gain-noise model of the single-mode laser, taking the cross-correlation between the quantum noise and pump noise into account. We find that, SR appears in the dependence of the SNR on the intensities of the quantum and the pump noises when the correlation coefficient between both the noises is negative; moreover, when the cross-correlation between the two noises is strongly negative, SR exhibits a resonance and a suppression versus the gain coefficient, meanwhile, the single-peaked SR and multi-peaked SR occur in the behaviors of the SNR as functions of the loss coefficient and the deterministic steady-state intensity. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Magneto-transport measurements have been carried out on three heavily Si delta-doped In-0.52 Al-0.48 As/In-0.53 Ga-0.47 As/In-0.52 A(10.48) As single quantum well samples in which two subbands were occupied by electrons. The weak anti-localization (WAL) has been found in such high electron mobility systems. The strong Rashba spin-orbit (SO) coupling is due to the high structure inversion asymmetry (SIA) of the quantum wells. Since the WAL theory model is so complicated in fitting our experimental results, we obtained the Rashba SO coupling constant alpha and the zero-field spin splitting Delta(0) by an approximate approach. The results are consistent with that obtained by the Shubnikov-de Haas (SdH) oscillation analysis. The WAL effect in high electron mobility system suggests that finding a useful approach for deducing alpha and Delta(0) is important in designing future spintronics devices that utilize the Rashba SO coupling.
Resumo:
Owing to the considerable virtues of semiconductor lasers for applications, they have become the main optical source for fiber communication systems recently. The behavior of stochastic resonance (SR) in direct-modulated semiconductor laser systems is investigated in this article. Considering the carrier and photon noises and the cross-correlation between the two noises, the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the modulated laser system were calculated using the linear approximation method. We found that the SR always appears in the dependence of the SNR upon the bias current density, and is strongly affected by the cross-correlation coefficient of the carrier and photon noises, the frequency of modulation signal and the photon lifetime in the laser cavity. Hence, it is promising to use the SR mechanism to enhance the SNR of direct-modulated semiconductor laser systems and improve the quality of optical communication. (c) 2006 Elsevier B.V. All rights reserved.