941 resultados para helical twist angle
Resumo:
Measurements of the variation of inclusive jet suppression as a function of relative azimuthal angle, Delta phi, with respect to the elliptic event plane provide insight into the path-length dependence of jet quenching. ATLAS has measured the Delta phi dependence of jet yields in 0.14 nb(-1) of root s(NN) = 2.76 TeV Pb + Pb collisions at the LHC for jet transverse momenta p(T) > 45 GeV in different collision centrality bins using an underlying event subtraction procedure that accounts for elliptic flow. The variation of the jet yield with Delta phi was characterized by the parameter, nu(jet)(2), and the ratio of out-of-plane (Delta phi similar to pi/2) to in-plane (Delta phi similar to 0) yields. Nonzero nu(jet)(2) values were measured in all centrality bins for p(T) < 160 GeV. The jet yields are observed to vary by as much as 20% between in-plane and out-of-plane directions.
Resumo:
The aim of this descriptive analysis was to examine sleep timing, circadian phase, and phase angle of entrainment across adolescence in a longitudinal study design. Ninety-four adolescents participated; 38 (21 boys) were 9-10 years ("younger cohort") and 56 (30 boys) were 15-16 years ("older cohort") at the baseline assessment. Participants completed a baseline and then follow-up assessments approximately every six months for 2.5 years. At each assessment, participants wore a wrist actigraph for at least one week at home to measure self-selected sleep timing before salivary dim light melatonin onset (DLMO) phase - a marker of the circadian timing system - was measured in the laboratory. Weekday and weekend sleep onset and offset and weekend-weekday differences were derived from actigraphy. Phase angles were the time durations from DLMO to weekday sleep onset and offset times. Each cohort showed later sleep onset (weekend and weekday), later weekend sleep offset, and later DLMO with age. Weekday sleep offset shifted earlier with age in the younger cohort and later in the older cohort after age 17. Weekend-weekday sleep offset differences increased with age in the younger cohort and decreased in the older cohort after age 17. DLMO to sleep offset phase angle narrowed with age in the younger cohort and became broader in the older cohort. The older cohort had a wider sleep onset phase angle compared to the younger cohort; however, an age-related phase angle increase was seen in the younger cohort only. Individual differences were seen in these developmental trajectories. This descriptive study indicated that circadian phase and self-selected sleep delayed across adolescence, though school-day sleep offset advanced until no longer in high school, whereupon offset was later. Phase angle changes are described as an interaction of developmental changes in sleep regulation interacting with psychosocial factors (e.g., bedtime autonomy)
Resumo:
OBJECTIVE The critical shoulder angle (CSA) is an indicator of degenerative shoulder pathologies. CSAs above 35° are associated with degenerative rotator cuff disease, whereas values below 30° are common in osteoarthritis of the glenohumeral joint. Measurements are usually performed on radiographs; however, no data have been reported regarding the reliability of CT scan measurements between different readers or the reproducibility of measurements from radiographs to CT scans. The purpose of our study was to clarify whether CSA measurements on radiographs and CT scans of the same patients show similar values. MATERIALS AND METHODS CSA measurements of 60 shoulders (59 patients) were performed on radiographs and multiplanar reconstructions of corresponding CT scans. Inter-reader reliability and inter-method correlation were calculated. RESULTS The mean discrepancy between readers was only 0.2° (SD ±1.0°) on radiographs. CT scan measurements showed a mean discrepancy of 0.3° (SD ±1.2°). The inter-reader reliability was 0.993 for radiographs and 0.989 for CT scans. There was a very strong inter-method correlation between the CSA measured on radiographs and CT scans (Spearman's rho = 0.974). The mean differences between angles on radiographs and CT measurements were -0.05° (SD ±1.2°) and 0.1° (SD ±1.2°), respectively. CONCLUSION Measurements of the CSA on anterior-posterior radiographs and CT scans are highly correlated, and inter-modality differences are negligible.
Resumo:
BACKGROUND The pathogenesis of full-thickness tears of the rotator cuff remains unclear. Apart from age and trauma, distinct scapular morphologies have been found to be associated with rotator cuff disease. The purpose of the present study was to evaluate whether a score formed using these established risk factors was able to predict the presence of a rotator cuff tear reliably. METHODS We retrospectively assessed a consecutive series of patients with a minimal age of 40 years old, who had true antero-posterior (AP) radiographs of their shoulders, as well as a magnetic resonance (MR) gadolinium-arthrography, between January and December 2011. In all of these patients, the critical shoulder angle (CSA) was determined, and MR images were assessed for the presence of rotator cuff tears. Additionally, the patients' charts were reviewed to obtain details of symptom onset. Based on these factors, the so-called rotator cuff tear (RCT) score was calculated. RESULTS Patients with full-thickness RCTs were significantly older and had significantly larger CSAs than patients with intact rotator cuffs. Multiple logistic regression, using trauma, age and CSA as independent variables, revealed areas under the curve (AUCs) for trauma of 0.55, for age of 0.65 and for CSA of 0.86. The combination of all three factors was the most powerful predictor, with an AUC of 0.92. CONCLUSION Age, trauma and the CSA can accurately predict the presence of a posterosuperior RCT. LEVEL OF EVIDENCE Level IV. Case series with no comparison groups.
Resumo:
The efficient recognition of the pyrimidine base uracil by hypoxanthine or thymine in the parallel DNA triplex motif is based on the interplay of a conventional N−H⋅⋅⋅O and an unconventional C−H⋅⋅⋅O hydrogen bond.