943 resultados para gravity anomaly


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in situ real time measurement of the regression rate of a melting interface (RRMI) is performed by the ultrasonic measurement system reported here. The RRMI is the rate at which a solid/liquid interface (SLI) moves along a metallic rod while burning in an oxygen-enriched atmosphere and is an important flatnmability indicator. The ultrasonic transducer and associated equipment used to drive the transducer and record the echo signal is described, along with the process that transforms the acquired signals into a RRMI value. Test rods of various metals and geometric shapes were burned at several test conditions in different test facilities. The RRMI results with quantified errors are presented and reviewed. The effect of reduced gravity on burning metals is important to space-applications and RRMI results obtained in a reduced gravity environment are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Standard upward-burning promoted ignition tests (“Standard Test Method for Determining the Combustion Behavior of Metallic Materials in Oxygen-Enriched Atmospheres,” ASTM G4-124 [1] or “Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion,” NASA-STD-6001, NASA Test 17 [2]) were performed on cylindrical iron (99.95% pure) rods in various oxygen purities (95.0–99.98%) in reduced gravity onboard NASA JSC's KC-135 to investigate the effect of gravity on the regression rate of the melting interface. Visual analysis of experiments agrees with previous published observations showing distinct motions of the molten mass attached to the solid rod during testing. Using an ultrasonic technique to record the real-time rod length, comparison of the instantaneous regression rate of the melting interface and visual recording shows a non-steady-state regression rate of the melting interface for the duration of a test. Precessional motion is associated with a higher regression rate of the melting interface than for test periods in which the molten mass does not show lateral motion. The transition between the two types of molten mass motion during a test was accompanied by a reduced regression rate of the melting interface, approximately 15–50% of the average regression rate of the melting interface for the entire test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ε-caprolactone) (PCL) fibers produced by wet spinning from solutions in acetone under low-shear (gravity-flow) conditions resulted in fiber strength of 8 MPa and stiffness of 0.08 Gpa. Cold drawing to an extension of 500% resulted in an increase in fiber strength to 43 MPa and stiffness to 0.3 GPa. The growth rate of human umbilical vein endothelial cells (HUVECs) (seeded at a density of 5 × 104 cells/mL) on as-spun fibers was consistently lower than that measured on tissue culture plastic (TCP) beyond day 2. Cell proliferation was similar on gelatin-coated fibers and TCP over 7 days and higher by a factor of 1.9 on 500% cold-drawn PCL fibers relative to TCP up to 4 days. Cell growth on PCL fibers exceeded that on Dacron monofilament by at least a factor of 3.7 at 9 days. Scanning electron microscopy revealed formation of a cell layer on samples of cold-drawn and gelatin-coated fibers after 24 hours in culture. Similar levels of ICAM-1 expression by HUVECs attached to PCL fibers and TCP were measured using RT-PCR and flow cytometry, indicative of low levels of immune activation. Retention of a specific function of HUVECs attached to PCL fibers was demonstrated by measuring their immune response to lipopolysaccharide. Levels of ICAM-1 expression increased by approximately 11% in cells attached to PCL fibers and TCP. The high fiber compliance, favorable endothelial cell proliferation rates, and retention of an important immune response of attached HUVECS support the use of gravity spun PCL fibers for three-dimensional scaffold production in vascular tissue engineering. © Mary Ann Liebert, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is concerned with gravity field recovery from low-low satellite to satellite range rate data. An improvement over a coplanar mission is predicted in the errors associated with certain parts of the geopotential by the separation of the orbital planes of the two satellites. Using Hill's equations an analytical scheme to model the range rate residuals is developed. It is flexible enough to model equally well the residuals between pairs of satellites in the same orbital plane or whose planes are separated in right ascension. The possible benefits of such an orientation to gravity field recovery from range rate data can therefore be analysed, and this is done by means of an extensive error analysis. The results of this analysis show that for an optimal planar mission improvements can be made by separating the satellites in right ascension. Gravity field recoveries are performed in order to verify and gauge the limitations of the analytical model, and to support the results of the error analysis. Finally the possible problem of the differential decay rates of two satellites due to the diurnal bulge are evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ε-caprolactone) (PCL) fibres were produced by wet spinning from solutions in acetone under low shear (gravity flow) conditions. As-spun PCL fibres exhibited a mean strength and stiffness of 7.9 MPa and 0.1 GPa, respectively and a rough, porous surface morphology. Cold drawing to an extension of 500% resulted in increases in fibre strength (43 MPa) and stiffness (0.3 GPa) and development of an oriented, fibrillar surface texture. The proliferation rate of Swiss 3T3 mouse fibroblasts and C2C12 mouse myoblasts on as-spun, 500% cold-drawn and gelatin-modified PCL fibres was determined in cell culture to provide a basic measure of the biocompatibility of the fibres. Proliferation of both cell types was consistently higher on gelatin-coated fibres relative to as-spun fibres at time points below 7 days. Fibroblast growth rates on cold-drawn PCL fibres exceeded those on as-spun fibres but myoblast proliferation was similar on both substrates. After 1 day in culture, both cell types had spread and coalesced on the fibres to form a cell layer, which conformed closely to the underlying topography. The high fibre compliance combined with a potential for modifying the fibre surface chemistry with cell adhesion molecules and the surface architecture by cold drawing to enhance proliferation of fibroblasts and myoblasts, recommends further investigation of gravity-spun PCL fibres for 3-D scaffold production in soft tissue engineering. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modification of human islets prior to transplantation may improve long-term clinical outcome in terms of diabetes management, by supporting graft function and reducing the potential for allo-rejection. Intragraft incorporation of stem cells secreting beta (β)-cell trophic and immunomodulatory factors represents a credible approach, but requires suitable culture methods to facilitate islet alteration without compromising integrity. This study employed a three-dimensional rotational cell culture system (RCCS) to achieve modification, preserve function, and ultimately influence immune cell responsiveness to human islets. Islets underwent intentional dispersal and rotational culture-assisted aggregation with amniotic epithelial cells (AEC) exhibiting intrinsic immunomodulatory potential. Reassembled islet constructs were assessed for functional integrity, and their ability to induce an allo-response in discrete T-cell subsets determined using mixed islet:lymphocyte reaction assays. RCCS supported the formation of islet:AEC aggregates with improved insulin secretory capacity compared to unmodified islets. Further, the allo-response of peripheral blood mononuclear cell (PBMC) and purified CD4+ and CD8+ T-cell subsets to AEC-bearing grafts was significantly (p < 0.05) attenuated. Rotational culture enables pre-transplant islet modification involving their integration with immunomodulatory stem cells capable of subduing the allo-reactivity of T cells relevant to islet rejection. The approach may play a role in achieving acute and long-term graft survival in islet transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Java software or libraries can evolve via subclassing. Unfortunately, subclassing may not properly support code adaptation when there are dependencies between classes. More precisely, subclassing in collections of related classes may require reimplementation of otherwise valid classes. This problem is defined as the subclassing anomaly, which is an issue when software evolution or code reuse is a goal of the programmer who is using existing classes. Object Teams offers an implicit fix to this problem and is largely compatible with the existing JVMs. In this paper, we evaluate how well Object Teams succeeds in providing a solution for a complex, real world project. Our results indicate that while Object Teams is a suitable solution for simple examples, it does not meet the requirements for large scale projects. The reasons why Object Teams fails in certain usages may prove useful to those who create linguistic modifications in languages or those who seek new methods for code adaptation.